

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO

Evelin Yesenia Marroquín Aroch

Asesorado por el Ing. Marco Antonio García Díaz

Guatemala, mayo de 2016

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA
POR

EVELIN YESENIA MARROQUÍN AROCHASESORADO POR EL ING. MARCO ANTONIO GARCÍA DÍAZ

AL CONFERÍRSELE EL TÍTULO DE

INGENIERA CIVIL

GUATEMALA, MAYO DE 2016

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Pedro	Antonio Aguilar	Polanco
--------	------------	-----------------	---------

VOCAL I Ing. Angel Roberto Sic García

VOCAL II Ing. Pablo Christian de León Rodríguez

VOCAL III Inga. Elvia Miriam Ruballos Samayoa

VOCAL IV Br. Raúl Eduardo Ticún Córdova

VOCAL V Br. Henry Fernando Duarte García

SECRETARIA Inga. Lesbia Magalí Herrera López

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. Murphy Olympo Paiz Recinos

EXAMINADOR Ing. Fernando Amílcar Boiton Velásquez

EXAMINADOR Ing. Rafael Enrique Morales Ochoa

EXAMINADOR Ing. Crecencio Benjamín Cifuentes Velásquez

SECRETARIO Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Civil, con fecha marzo de 2011.

Evelin Yesenia Marroquin Aroch

Ingeniero:
Ronald Estuardo Galindo Cabrera
Coordinador de Área de Estructuras
Escuela de Ingeniería Civil
Universidad de San Carlos de Guatemala

Estimado Ingeniero Galindo

Por este medio hago de su conocimiento que he concluido con el asesoramiento de la estudiante universitaria EVELIN YESENIA MARROQUIN AROCH, en el desarrollo del trabajo de graduación titulado ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO después de haber revisado y corregido su contenido, sin encontrar alguna objeción al respecto, doy mi satisfactoria aprobación al mencionado trabajo de graduación.

El autor de este trabajo de graduación y su asesor son responsables por su contenido y conclusiones del mismo.

Sin otro particular me suscribo a usted.

Atentamente.

ng. Marco Antonio García Ingeniero Civil

Colegiado 6,899 Asesor

Marco Anlonio García Diag Ingeniero Civil Colegiado No 6899

Universidad de San Carlos de Guatemala FACULTAD DE INGENIERÍA Escuela de Ingeniería Civil

Guatemala, 15 de abril de 2016

Ingeniero
Hugo Leonel Montenegro Franco
Director Escuela Ingeniería Civil
Facultad de Ingeniería
Universidad de San Carlos

Estimado Ingeniero Montenegro.

Le informo que he revisado el trabajo de graduación ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO, desarrollado por la estudiante de Ingeniería Civil Evelin Yesenia Marroquín Aroch, con Carnet No.200313146, quien contó con la asesoría del Ing. Marco Antonio García Díaz.

Considero este trabajo bien desarrollado y representa un aporte para la comunidad del área y habiendo cumplido con los objetivos del referido trabajo doy mi aprobación al mismo solicitando darle el trámite respectivo.

Atentamente,

ID Y ENSEÑAD A TODOS

Ing. Ronald Estuardo Galindo Cabrera Jefe del Departamento de Estructuras FACULTAD DE INGENIERIA
DEPARTAMENTO
DE
ESTRUCTURAS
USAC

/mrrm.

PROBRAMA DE MRERIERIA
OWIL AGREDITADO POR Agencia Gentramaricana de Acadétación de Programes de Arquitactura e ingeniero Arquitactura e ingeniero PRISONO 2013 - 2015

Universidad de San Carlos de Guatemala FACULTAD DE INGENIERÍA Escuela de Ingeniería Civil

El director de la Escuela de Ingeniería Civil, después de conocer el dictamen del Asesor Ing. Marco Antonio García Díaz y del Coordinador del Departamento de Estructuras Ing. Ronald Estuardo Galindo Cabrera, al trabajo de graduación de la estudiante Evelin Yesenia Marroquín Aroch, titulado ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS DE CONCRETO ARMADO Y CASAS DE MAMPOSTERÍA DE CONCRETO, da por este medio su aprobación a dicho trabajo.

Ing. Hygo Leonel Montenegro Franco

Guatemala, mayo2016
/mrrm.

RECTOR

Universidad de San Carlos de Guatemala

DTG. 237.2016

DECANO

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Civil, al Trabajo de Graduación titulado: ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO ESTRUCTURAL DE CASAS MAMPOSTERÍA DE CONCRETO ARMADO Y CASAS DE DE CONCRETO, presentado por la estudiante universitaria Evelin Yesenia Marroquín Aroch, y después de haber culminado las revisiones previas bajo la responsabilidad de las instancias correspondientes, se autoriza la impresión del mismo.

STOUA CARO

IMPRÍMASE:

Ing Pedro Antonio Aguilar Polanco

Decano

Guatemala, mayo de 2016

/gdech

ACTO QUE DEDICO A:

Dios Por ser mi guía y darme la bendición y

sabiduría para concluir uno de mis sueños.

Mis padres Ing. José Orlando Marroquín y Miriam Aroch,

por su apoyo y amor incondicional y brindarme

su ejemplo de valentía y perseverancia.

Mis hermanos Jorge Orlando y Ana Gabriela Marroquín

Aroch, por su amor y entrega en todos los

momentos.

Mi hijo José Jorge Marroquín Aroch, por ser mi más

grande bendición y motivación.

Mis abuelos Por sus consejos y amor.

Mis amigos Por su apoyo y amistad sincera en las

diferentes luchas compartidas y superadas.

AGRADECIMIENTOS A:

Universidad de San Por abrirme las puertas en mi preparación

Carlos de Guatemala profesional.

Facultad de Ingeniería Por los múltiples conocimientos que me brindó

durante estos años de estudio.

Mi asesor Ing. Marco Antonio García Díaz, su asesoría y

apoyo en todo el proceso de la elaboración del

trabajo de graduación.

ÍNDICE GENERAL

INDI	CE DE ILU	JSTRACIO	NES	V
LIST	A DE SÍM	BOLOS		ΙX
GLO	SARIO			ΧI
RES	JMEN		X	.111
OBJE	ETIVOS		×	í۷
INTR	ODUCCIO	ÓN	X\	/
1.	DESCR	IPCIÓN DE	SISTEMA TIPO CAJÓN	1
	1.1.	Sistema e	en general	1
		1.1.1.	Descripción	1
		1.1.2.	Losas	2
		1.1.3.	Muros	2
		1.1.4.	Mortero	3
		1.1.5.	Graut	3
		1.1.6.	Graut fino	3
		1.1.7.	Graut grueso	3
		1.1.8.	Mocheta	4
		1.1.9.	Diafragma	4
		1.1.10.	Resistencia de diseño	4
		1.1.11.	Columna reforzada	5
		1.1.12.	Tipos de cargas	5
		1.1.13.	Fuerzas laterales por sismo	5
		1.1.14.	Corte basal	6
	1.2.	Casa de r	nampostería	7
		1.2.1.	Mampostería mixta	7

		1.2.2.	Metodología del diseño	9	
	1.3.	Casas fu	ndidas de concreto	11	
		1.3.1.	Casas fundidas in situ	11	
		1.3.2.	Metodología del diseño	11	
2.	VARIA	BLES PARA	A EL CASO EN ANÁLISIS	13	
	2.1.	Mampost	ería	13	
		2.1.1.	Cargas para análisis	13	
	2.2.	Casa de	concreto armado	13	
		2.2.1.	Cargas	14	
3.	CÁLCU	JLO DE CAS	SA DE MAMPOSTERÍA	15	
	3.1.	Planos		15	
	3.2.	Cálculo d	lel centro de rigidez (CR) y el centro de masa (CM	l)19	
	3.3.	Cálculo de las excentricidades de configuración y diseño2			
	3.4.	Determinación de la carga lateral2			
	3.5.	Determin	ación de la carga lateral por muro	27	
	3.6.	Cálculo d	lel incremento de carga por torsión	29	
	3.7.	Cálculo d	lel momento torsionante (T)	29	
	3.8.	Determin	ación de la distancia al centro de rigidez	30	
	3.9.	Cálculo d	lel momento de inercia polar (J)	31	
	3.10.	Determin	ación de la carga por torsión por muro	33	
	3.11.	Cálculo d	lel momento actuante	36	
	3.12.	Esfuerzos	s de corte y flexión en los muros	37	
	3.13.	Determin	ación de la cuantía horizontal por muro	41	
	3.14.	Determin	ación de la cuantía vertical por muro	41	
4.	CÁLCL	JLO DE CAS	SA DE CONCRETO ARMADO	43	
	4 1	Planos		43	

	4.2.	Peso de	losas	. 46		
	4.3.	Pesos de	e muros	. 47		
	4.4.	Centro d	e masa en losas	. 48		
	4.5.	Cálculo	Cálculo de centro de masa en muros			
	4.6.	Centro d	Centro de rigidez			
	4.7.	Cálculo	de las excentricidades de configuración y diseño	. 51		
	4.8.	Acciones	s actuantes en muros por carga lateral	. 51		
	4.9.	Cálculo	de corte directo	. 53		
	4.10.	Cálculo	de centro de torsión	. 55		
	4.11.	Cálculo	de cortante por torsión	. 56		
	4.12.	Cálculo	de cortante total	. 57		
	4.13.	Momento	o actuante	. 58		
	4.14.	Determin	nación de la cuantía por muro	. 59		
5.	COMP	ARACIÓN	DE RESULTADOS	. 61		
	5.1.	Mampos	tería	. 61		
		5.1.1.	Centros de masa	. 61		
		5.1.2.	Rigidez de muros y centro de rigidez	. 62		
		5.1.3.	Determinación de la carga lateral por muro	. 62		
		5.1.4.	Determinación de la distancia al centro de rigidez.	. 63		
		5.1.5.	Cálculo del momento de inercia polar (J)	. 63		
		5.1.6.	Determinación de la carga por torsión por muro	. 64		
		5.1.7.	Determinación de la carga por sismo total	. 64		
		5.1.8.	Cálculo del momento actuante	. 65		
		5.1.9.	Determinación de la cuantía horizontal por muro	. 65		
		5.1.10.	Momento actuante	. 66		
		5.1.11.	Cuantía vertical requerida y cuantía suministrada			
			por muro	. 66		
	5.2.	Concreto	o armado	. 66		

	5.2.1.	Peso en muros	67
5.3.	Centros	de masa	67
5.4.	Rigidez	de muros y centro de rigidez	68
5.5.	Cálculo	de corte directo	69
5.6.	Cálculo	de cortante por torsión	69
5.7.	Cálculo	de cortante total	70
5.8.	Moment	to actuante	70
5.9.	Determi	inación de la cuantía por muro	71
5.10.	Cuadro	comparativo	71
CONCLUSION	NES		73
RECOMENDA	CIONES		75
BIBI IOGRAFÍA	Α		77

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Metodologia de diseño (Sistema Constructivo de Mampostería)	10
2.	Metodologia de diseño (Sistema Conductivo de Concreto)	12
3.	Planta de arquitectura	16
4.	Planta de losas	17
5.	Planta de muros	18
6.	Gráfica del muro	23
7.	Planta de arquitectura de concreto armado	44
8.	Planta de muros de concreto armado	45
	TABLAS	
I.	Tipo de clasificación de estructura	1
 II.	Bloques de concreto	
III.	Resistencia a compresión de la mampostería de bloques de	0
	concreto	8
IV.	Clases de mortero	
٧.	Coordenadas del centro geométrico y longitud de muros	
VI.	Centros de masa	
VII.	Rigidez de muros y centro de rigidez	24
/III.	Cálculo de carga lateral	
IX.	Cálculo de la distancia al centro de rigidez	31
X.	Cálculo del momento de inercia polar	
XI.	Cálculo de carga por torsión	
	- ·	

XII.	Cálculo de la carga total	36
XIII.	Cálculo del momento actuante	37
XIV.	Corte y flexion	39
XV.	Cuantía vertical requerida y cuantía suministrada por muro	41
XVI.	Cuantía vertical requerida y cuantía suministrada por muro	42
XVII.	Pesos de losas	46
XVIII.	Cálculo de peso de muros	47
XIX.	Cálculo de centro de masa en losas	48
XX.	Cálculo de centro de masa de muros	49
XXI.	Centro de rigidez sentido X, Y	50
XXII.	Corte directo sentido X, Y	54
XXIII.	Centro de torsión X, Y	55
XXIV.	Centro de cortante por torsión X, Y	56
XXV.	Cálculo de cortante total X, Y	57
XXVI.	Cálculo de momento actuante	58
XXVII.	Cálculo de área de acero	60
XXVIII.	Muro número 14	61
XXIX.	Pesos de muros	62
XXX.	Rigidez de muros y centro de rigidez	62
XXXI.	Determinación de la carga lateral por muro	63
XXXII.	Determinación de la distancia al centro de rigidez	63
XXXIII.	Cálculo del momento de inercia polar (J)	64
XXXIV.	Determinación de la carga por torsión por muro	64
XXXV.	Determinación de la carga por sismo total	65
XXXVI.	Cálculo del momento actuante	65
XXXVII.	Determinación de la cuantía horizontal por muro	66
XXXVIII.	Concreto armado muro número 14	67
XXXIX.	Peso en muros	67
XL.	Centros de masa	68

XLI.	Rigidez de muro y centro de rigidez	68
XLII.	Cálculo de corte directo	69
XLIII.	Cálculo de cortante por torsión	69
XLIV.	Cálculo de cortante total	70
XLV.	Momento actuante	70
XLVI.	Determinación de la cuantía por muro	71
XLVII.	Cuadro comparativo	72

LISTA DE SÍMBOLOS

Símbolo Significado

AS min. Área de refuerzo mínimo

AaÁrea del aceroAreqÁrea requerido

CV Carga viva

CR Centro de rigidezP Cuantía de acero

ρmáx. Cuantía máxima de refuerzo longitudinal de aceroρmin. Cuantía mínima de refuerzo longitudinal de acero

fb Esfuerzo de flexión en viga

fs Esfuerzo en el refuerzo calculado para cargas

Fb Esfuerzo permisible a flexión

Wc Peso del concreto

f'c Resistencia a la compresión del concreto

GLOSARIO

Agies Asociación Guatemalteca de Ingeniería Estructural

y Sísmica.

Bloque de concreto Este bloque es fabricado a partir de un mortero de

arena blanca y cemento aglomerado, en las

instalaciones de una fábrica.

Corte basal Total de fuerzas sísmicas equivalentes que actúan

sobre la estructura y se distribuye a lo alto de la

misma.

Falla estructural Una falla es la pérdida gradual de resistencia de

un elemento para soportar esfuerzos bajo los

cuales fue diseñado.

Fundición Proceso de mezclado y colocación de la mezcla o

concreto.

In situ Expresión en latín que significa: en el sitio.

Losa Es una placa rígida formada por una combinación

de concreto y acero, colocado, geométricamente,

para contrarrestar esfuerzos de flexión y corte.

Mamposte

Elemento utilizado para construcción de viviendas, hecho de materiales como: el adobe, arcilla (ladrillos) y los que se realizan con concreto son conocidos como bloques de concreto.

Prefabricado

Se denomina así a todo material o elemento fabricado, previamente, en una planta de producción, fuera del lugar de proyecto.

Revenimiento o Asentamiento

Término aplicado a la medición de la fluidez de la mezcla húmeda. Por este medio de la cual se mide la manejabilidad del concreto.

Sisa

Es la junta de mortero que queda entre las unidades de *block*, ya sea horizontal o verticalmente.

Solera

En mampostería se define como una estructura, ubicando en donde está el refuerzo longitudinal necesario para soportar esfuerzos cortantes y flexionantes.

RESUMEN

En el presente trabajo de graduación se realiza la descripción del sistema tipo cajón utilizando dos sistemas constructivos: casas de mampostería confinada y casas de concreto fundido en el sitio. Se hace énfasis en el uso de construcciones sismo resistentes en el país, con el objeto de ver cuál de los dos sistemas tiene un mejor comportamiento y que los constructores y profesionales que se dediquen a la construcción de viviendas. Estos deben tomar en consideración los parámetros requeridos para realizar viviendas seguras.

OBJETIVOS

General

Realizar una evaluación comparativa de los dos métodos constructivos.

Específicos

- 1. Describir el sistema tipo cajón.
- 2. Describir el sistema constructivo de casas de concreto armado tomando en cuenta que es un sistema tipo cajón.
- 3. Describir el sistema constructivo de casas de mampostería tomando en cuenta que es un sistema tipo cajón.
- 4. Descripción de las variables a utilizar en los dos sistemas.
- 5. Diseño y análisis de las casas de concreto armado.
- 6. Diseño y análisis de las casas de mampostería.
- 7. Comparación de los dos sistemas con la finalidad de verificar el comportamiento estructural.

INTRODUCCIÓN

En el presente trabajo de graduación se realizará una comparación de dos sistemas constructivos que pertenecen al sistema tipo cajón. Esto con el objetivo primordial de revisar el comportamiento de cada uno de ellos.

Se hará énfasis en comparar una casa de un nivel para el sistema de concreto. Asimismo construido con mampostería, esto quiere decir que para los dos sistemas las mismas dimensiones cargas con la excepción que su análisis, varía un poco por ciertos parámetros que aplica las normas para cada uno de los mismos.

En el desarrollo de los capítulos se presenta a detalle cada uno de los sistemas constructivos. Básicamente se usa el sistema tipo cajón formado por muros y losas que sencillamente crean un cajón trasmitiendo sus cargas al suelo.

Para realizar la comparación se tomará como base el reglamento o norma recomendada NSE Agies. Su análisis y diseño se desarrollarán de tal manera que sirva de guía para todos los constructores y gestores de proyectos.

1. DESCRIPCIÓN DE SISTEMA TIPO CAJÓN

1.1. Sistema en general

A continuación se presenta el sistema operativo en general.

1.1.1. Descripción

Es un sistema formado por muros y losas como diafragmas horizontales. Estos forman cajones que tramiten la carga al suelo, dando como resultado un sistema de sismo resistente, según el refuerzo proporcionado

Tabla I. Tipo de clasificación de estructura

	Tipo de estructura	Sistema vertical sismo resistente			
E1	Sistema de marcos				
	Marcos ordinarios	Acero estructural			
		Concreto reforzado			
	Marcos especiales	Acero estructural			
		Concreto reforzado			
E2	Sistema tipo cajón	Mamposteria reforzada			
		Concreto reforzado			
		Mamposteria sin refuerzo			
		Madera			
		Marcos arriostrados			
E3	Sistemas combinados de	Muros de mamposteria reforzada			
	muros y marcos	Muros de concreto reforzado			
		Arriostes ordinarios			
		Arriostes excéntricos			
		Marcos arriostrados en el lugar de muros			
E4	Sistema dual de muros y	Muros de mamposteria reforzada			
	marcos	Muros de concreto reforzado			
		Arriostes ordinarios			
		Arriostes excéntricos			
		Marcos arriostrados en el lugar de muros			
E5	Columnas voladizas o pendulo	de concreto reforzado combinado			
	invertido	de estructura de acero con detalles sísmicos			
		de estructura de madera			

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sismica. Norma NSE-3.

Según la norma NSE 3:

Sistema de cajón (E2) es un sistema formado por losas actuando como diafragmas en el plano horizontal, sostenidas por muros estructurales. Los muros soportarán todas las solicitaciones horizontales y la parte de las solicitaciones verticales que les correspondan por área tributaria (que normalmente excederá el 50 % del peso de la estructura).

La carga vertical no soportada por los muros podrá ser sostenida por columnas de concreto o acero que no se requiere que tengan la función de resistir solicitaciones horizontales, pero deberán aceptar las acciones inducidas por las derivas laterales de la estructura. Las losas pueden tener vigas incorporadas o ser planas. Las vigas no necesitan tener una función sismorresistente. Los muros estructurales actualmente considerados en esta norma pueden ser de concreto reforzado o mampostería reforzada. Los muros estructurales pueden ser ordinarios o especiales atendiendo a sus capacidades sismorresistentes.

1.1.2. Losas

Es una placa rígida formada por una combinación de concreto y acero, colocado, geométricamente, para contrarrestar esfuerzos de flexión y corte.

1.1.3. Muros

Elemento vertical y lineal que forma parte de una construcción y que posee función estructural soportar otros elementos estructurales.

1.1.4. **Mortero**

Mezcla de materiales cementantes y arena bien. La dosificación de la mezcla deberá proveer las condiciones que permitan su trabajabilidad, capacidad para retención de agua y durabilidad. Este deberá contribuir a la resistencia a compresión del elemento estructural, por medio de la pega entre las unidades prefabricadas para levantados. Se debe tener especial cuidado en la cantidad de agua que se le proveerá a la mezcla, ya que esto afecta directamente a la capacidad de compresión del mortero.

1.1.5. Graut

También conocido como lechada. Es una mezcla de cemento, arena, grava fina y la cantidad de agua necesaria para proporcionar una consistencia fluida. Esta permite su colocación dentro de las celdas de los bloques de concreto donde va ubicado el acero para los muros con refuerzo uniformemente distribuido. Esto para contribuir a la resistencia a compresión del muro que se está construyendo. Según el tamaño nominal máximo de los agregados el *graut* se clasificará como *graut* fino o *graut* grueso.

1.1.6. *Graut* fino

Se utilizará cuando el espacio para el vaciado es pequeño, angosto o congestionado con refuerzo.

1.1.7. Graut grueso

Este tipo se utilizará cuando el espacio entre el acero de refuerzo y la unidad prefabricada para levantado sea por lo menos 1,30 cm. Cuando las

dimensiones mínimas de las celdas en la pieza para levantado sean de 3,80 cm de ancho y 7,50 cm de largo.

1.1.8. Mocheta

Es vertical pero no es una columna. Las columnas trabajan solas como en los edificios con marcos, las mochetas trabajan en conjunto con la mampostería, nunca trabajan solas. Una columna es independiente del levantado y se construye antes que el levantado. La mocheta debe ser una unidad con el levantado y su concreto se funde después de haber hecho el levantado del que forma parte.

1.1.9. Diafragma

Sistema de piso o techo diseñado para transmitir fuerzas laterales a muros de corte u otros elementos resistentes a fuerzas laterales.

1.1.10. Resistencia de diseño

Resistencia significa disponer de elementos con dimensiones y materiales de construcción adecuados. Esto para soportar las acciones de las fuerzas a las cuales puede verse expuesta la edificación.

La estructura deberá poseer muros resistentes a cargas laterales dispuestas en dos direcciones ortogonales. Por lo menos, el 80 % de las cargas de gravedad deben ser soportadas por los muros.

1.1.11. Columna reforzada

Es un miembro estructural vertical en el cual, tanto el refuerzo como la mampostería, resisten la compresión.

1.1.12. Tipos de cargas

 Las cargas muertas: son las que se mantienen constantes en magnitud y con una posición fija durante la vida útil de la estructura, generalmente es el peso propio.

Estimándose las magnitudes de las cargas según los volúmenes y sus pesos específicos. Estas cargas pueden ser: pesos propios de losas, vigas, columnas, los rellenos, repellos y cernidos y pisos, instalaciones eléctricas y otros.

Las cargas vivas: constan principalmente de cargas de ocupación. Estas pueden estar aplicadas en forma total, parcial o no estar presentes. La magnitud y distribución son inciertas en determinado momento, sin determinar con exactitud su máxima intensidad en la vida útil de la estructura.

1.1.13. Fuerzas laterales por sismo

Un sismo produce, en una estructura, ciertos ladeos que a la vez generan determinados esfuerzos. Para estimar estos esfuerzos producidos en los diferentes elementos que componen la estructura, ya sea en las columnas y vigas, o en los muros de cortante, se simplifica el análisis sísmico. Esto

utilizando fuerzas laterales estáticas que producirán el mismo efecto de ladeo que un sismo.

La fuerza sísmica dependerá del peso del edificio aplicada en la base. Este será este el punto de aplicación, a esta fuerza se le conoce como corte basal. Se transmitirá a los elementos que componen la estructura según sus tamaños, formas, rigideces y posiciones, tanto en elevación como en planta.

Para analizar la magnitud del corte basal se utilizarán las normas estructurales de diseño y construcción para la República de Guatemala.

1.1.14. Corte basal

Se denomina de esta manera, ya que permite determinar la fuera lateral total. Luego se distribuye dentro de la altura de la estructura. Este cálculo se realiza con base en lo propuesto por Agies 2010 con la siguiente fórmula:

$$VB = Cs * Ws$$

Donde

- Ws =debe de tomarse como el total de la carga muerta más el 25 % de la carga viva, se considera como el peso de la masa del edificio capaz de generar fuerzas inerciales que contribuyan al cortante basal.
- Cs= es el coeficiente sísmico de diseño para cada dirección de análisis y se establece de la siguiente manera:

$$Cs = \frac{Sa * (T)}{R}$$

Donde

R = es un factor para diseño según Agies NSE 3-10.

Sa * (T) = es la demanda sísmica de diseño para una estructura con periodo.

1.2. Casa de mampostería

En este tipo de casas se utiliza un sistema constructivo tradicional formado por muros de mampostería reforzada y diafragmas horizontales formando un cajón. Este se realiza mediante la disposición ordenada elementos que van mampuestos tales como el *block*, ladrillo, adobe, y otros, cuyas dimensiones son pequeñas, comparadas con las del elemento que se va construir. Los mampostes (en este caso el *block*) tienen la característica de trabajar eficientemente bajo esfuerzos de compresión inducidos por la carga axial o vertical. Esta se genera debido al peso del techo, las cargas vivas y el peso propio de los *block*s.

Además, debe soportar fuerzas cortantes y momentos de flexión, cuales son generados por la acción de un sismo, empujes normales al plano del muro, causados por viento o tierra. Por ello, para cubrir la solicitación de estos esfuerzos es necesario proveer con acero estructural, tanto transversal como longitudinalmente, a los muros que se van a construir.

1.2.1. Mampostería mixta

Es la que se realiza a través de la conformación de un muro. Luego se confina con vigas y columnas de concreto reforzado vaciadas en sitio. El comportamiento de un muro confinado depende de las dimensiones, la cuantía de refuerzo de los elementos de confinamiento, el trabajo conjunto que se logre

entre los mampostes y los elementos de confinamiento. Así como la esbeltez y la existencia de armadura horizontal en todo el muro.

Esto además de tener especial cuidado de no interrumpir los lazos de confinamiento, es decir vigas y columnas del marco confinante. Debido a que no se lograría el objeto de que trabajen como un solo elemento resistente a momentos flexionantes.

Tabla II. Bloques de concreto

Unidades de <i>block</i> características según su clase				
		Resistencia		
Block	color	capacidad de carga	Requisito de resistencia	Producción contra la humedad
Clase A	Azul	SUPERIOR	140	Superior
Clase B	Rojo	ALTA	100	Alta
Clase C	Verde	MEDIA	66	Media
Clase D	Negro	BAJA	50	Menor

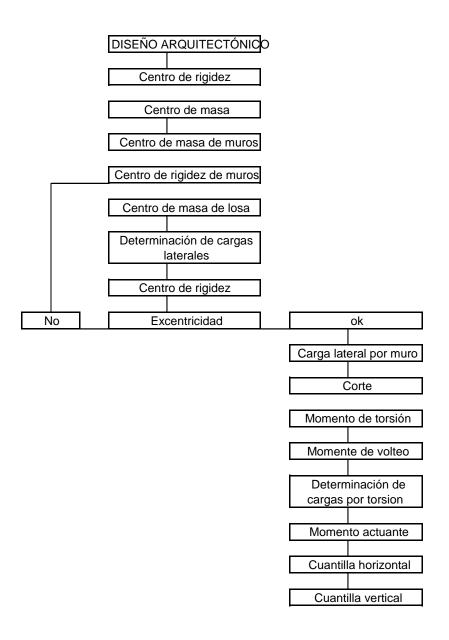
Fuente: elaboración propia, con base en norma NGT 41054 y datos del instituto del cemento y concreto.

Tabla III. Resistencia a compresión de la mampostería de bloques de concreto

f'p (kg/cm²)	f´m (en kg/cm²)			
r p (kg/cm)	Mortero M	Mortero S	Mortero N	
25	15	10	10	
50	35	25	20	
75	65	50	40	
125	90	80	70	

Fuente: elaboración propia.

Tabla IV. Clases de mortero


Tipo de mortero	Proporción volumétrica						
montero	Cemento	Cal	Arena				
М	1	Desde 1/10 hasta 1/4	Combinación cemento y cal y se mide un volumen de los dos				
S	1	de 0,25 a 0,50	Arena 2 ¼ y 3 veces ese volumen combinado				
N	1	de 0,50 a 1,					

1.2.2. Metodología del diseño

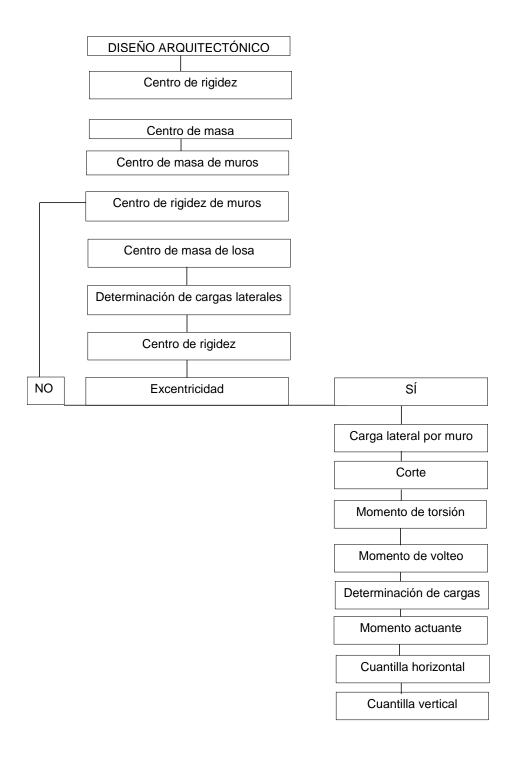
En este caso se calculará para ambos casos. En todo diseño de estructuras es recomendable la simetría en geometría y rigidez de las mismas, con el fin de hacer mínimos los efectos de la torsión.

Los pasos para realizar los análisis se muestran en la figura 1 de la siguiente página:

Figura 1. **Metodologia de diseño (Sistema Constructivo de Mampostería)**

1.3. Casas fundidas de concreto

En este tipo de casas se utiliza un sistema constructivo tradicional formado por muros reforzados y diafragmas horizontales formando un cajón.


1.3.1. Casas fundidas in situ

Estas casas se forman por muros y diafragmas horizontales reforzados que tramiten la carga al suelo en este tipo de estructura. Regularmente se funden con formaleta de aluminio o madera en el lugar por la configuración de las casas y al tener muros estructurales y diafragmas horizontales son considerados un sistema tipo cajón.

1.3.2. Metodología del diseño

La metodología más simple es la que se utiliza ya que brinda los mejores resultados a la hora de buscar una solución. Para la realización de este trabajo se desarrollaron dos tareas primordiales siendo: el estudio e interpretación de las especificaciones a utilizar y la aplicación de los mismos en un ejemplo práctico, las especificaciones a utilizar son principalmente el Agies (Asociación Guatemalteca de Ingeniería Estructural y Sísmica). Para la aplicación práctica de las Normas Agies se desarrollará el análisis de una casa de un nivel conforme a la siguiente metodología, que se muestra en la siguiente página.

Figura 2. Metodología de diseño (Sistema Conductivo de Concreto)

2. VARIABLES PARA EL CASO EN ANÁLISIS

2.1. Mampostería

En este tipo de casas se utiliza un sistema constructivo tradicional formado por muros de mampostería reforzada y diafragmas horizontales creando un cajón. Este se realiza mediante la disposición ordenada elementos que van mampuestos tales como el *block*, ladrillo, adobe

2.1.1. Cargas para análisis

- Carga viva en la losa: de entre piso 200 kg/m²
- Resistencia de los materiales
 - o Resistencia de concreto f'c = 210 kg/cm2 γ = 2400 kg/cm3
 - Resistencia de acero fy = 2 810 kg/cm2 (grado 40)
 - Mampostería f'm = 25 kg/cm2
 - Sobrecarga techo = 50 kg/cm2
 - \circ Altura h= 2,50 m

2.2. Casa de concreto armado

Estas casas se forman por muros y diafragmas horizontales reforzados que tramiten la carga al suelo en este tipo de estructura. Regularmente se funden con formaleta de aluminio o madera en el lugar por la configuración de

las casas y al tener muros estructurales y diafragmas horizontales son considerados un sistema tipo cajón.

2.2.1. **Cargas**

- Carga viva en la losa: de entre piso 200kg/m²
- Resistencia de los materiales
 - Resistencia de concreto f'c = 210 kg/cm² γ = 2400 kg/cm³
 - \circ Resistencia de acero fy = 2 810 kg/cm² (grado 40)
 - o Altura h = 2,50 m

3. CÁLCULO DE CASA DE MAMPOSTERÍA

3.1. Planos

A continuación se encuentran tres planos: una planta arquitectónica donde se encuentra de mejor manera la distribución de la casa a utilizar en este trabajo de tesis. Planta de losas y planta de muros, esto con la finalidad que se tenga la mejor distribución para los cálculos correspondientes.

(E) 1 **B** PLANTA DE ARQUITECTURA ESCALA 1: 75

Figura 3. Planta de arquitectura

-3.06 -2.82 -E Losa 1 Losa 2 3.4800 **D** 1.60 Losa 3 11.79 Losa 7 3.00 Losa 6 \bigcirc LOSAS Losa 8 3.71 Losas 1 - 8 3.46 PLANTA DE LOSAS

Figura 4. Planta de losas

3.06 2.82 (E) M-2 M-3 M-5 **(** M-6 6. M-4 м-с (C) M-11 3.00 M-13 $^{\mathbb{B}}$ 3.71

Figura 5. Planta de muros

PLANTA DE MUROS

М-В

MUROS Muros M-1 - M-A Para el sistema de mampostería reforzada:

Losa = (peso específico) * (espesor de la losa)
Losa =
$$(2 400 \text{ kg/m}^3)$$
 * $(0,10 \text{ m})$ = 240 kg/m^2

3.2. Cálculo del centro de rigidez (CR) y el centro de masa (CM)

Para el cálculo del centro de masa: el peso de muro por metro lineal se considera como:

Peso del mamposte * número de unidades (en cada m ²) * alto del muro 10 kg * 12,5 *blocks* * 2,50 m = 310 kg / ml

Para determinar el peso del muro se necesita multiplicar: el peso del muro por metro lineal, por la longitud del muro. Ejemplo del peso del muro A: Peso de muro: 310 kg/m * 3,48 m = 1078,80 kg

Tabla V. Coordenadas del centro geométrico y longitud de muros

C	COORDENADAS GEOMETRICAS									
Muro	Х	Υ	Long(m)							
1	0,93	3,48	3,48							
2	0,65	3,48	3,48							
3	0,82	3,48	3,48							
4	0,88	1,60	1,60							
5	0,88	0,72	0,72							
6	0,88	0,72	0,72							
7	0,62	0,72	0,72							
8	0,62	0,72	0,72							
9	2,02	3,00	3,00							
10	2,30	0,92	0,92							
11	2,30	1,22	1,22							
12	0,57	1,05	1,08							
13	0,57	0,87	0,87							
14	0,01	3,71	3,71							
15	0,00	0,83	0,83							
Α	1,01	3,71	1,01							
В	1,05	0,54	1,05							
С	2,02	3,00	2,02							
D	2,30	2,30	2,30							
E	1,88	1,60	1,88							
F	1,62	0,72	1,62							
G	0,93	3,48	0,93							
Н	0,80	3,48	0,80							
l	0,65	3,48	0,65							
J	0,82	3,48	0,82							

Tabla VI. Centros de masa

	PESOS DE MUROS										
Peso Muros =	310 kg/ml										
Muro	Long(m)	Peso (kg)	Х	Υ	W*X	W*Y					
1	3,48	1 078,80	0,93	3,48	1 003,28	3 754,22					
2	3,48	1 078,80	0,65	3,48	701,22	3 754,22					
3	3,48	1 078,80	0,82	3,48	884,62	3 754,22					
4	1,60	496,00	0,88	1,60	436,48	793,60					
5	0,72	223,20	0,88	0,72	196,42	160,70					
6	0,72	223,20	0,88	0,72	196,42	160,70					
7	0,72	223,20	0,62	0,72	138,38	160,70					
8	0,72	223,20	0,62	0,72	138,38	160,70					
9	3,00	930,00	2,02	3,00	1 878,60	2 790,00					
10	0,92	285,20	2,30	0,92	655,96	262,38					
11	1,22	378,20	2,30	1,22	869,86	461,40					
12	1,08	334,80	0,57	1,05	190,84	351,54					
13	0,87	269,70	0,57	0,87	153,73	234,64					
14	3,71	1 150,10	0,01	3,71	11,50	4 266,87					
15	0,83	257,30	0,00	0,83	0,00	213,56					
Α	1,01	313,10	1,01	3,71	316,23	1 161,60					
В	1,05	325,50	1,05	0,54	341,78	175,77					
С	2,02	626,20	2,02	3,00	1 264,92	1 878,60					
D	2,30	713,00	2,30	2,30	1 639,90	1 639,90					
E	1,88	582,80	1,88	1,60	1 095,66	932,48					
F	1,62	502,20	1,62	0,72	813,56	361,58					
G	0,93	288,30	0,93	3,48	268,12	1 003,28					
Н	0,80	248,00	0,80	3,48	198,40	863,04					
I	0,65	201,50	0,65	3,48	130,98	701,22					
J	0,82	254,20	0,82	3,48	208,44	884,62					
TOTAL		9 048,90			13 733,68	30 881,58					

CM de muro =
$$\Sigma$$
 peso muro * centro geométrico Σ peso muro

CM en X =
$$13733,68 = 1,51 \text{ m}$$

9048,90

CM en Y =
$$30.881,58 = 3,41 \text{ m}$$

9 048,90

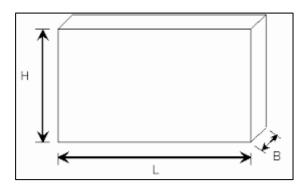
Peso de techo = área del techo x (S.C + CV)

Peso de techo = (5,88m * 11,79m) * (50+200) = 17 331,30 kg.

CM combinado techo-muro = peso techo* CM + peso muro*CM peso techo + peso muro

CM combinado en X =
$$(17\ 331,30\ x\ 1,51)$$
+ $(9\ 048,90x\ 1,51)$ = 1,51 m $(17\ 331.30\ +9048,90)$

CM combinado en Y =
$$(17\ 331,30\ x\ 3,41)$$
+ $(9\ 048,90x\ 3,41)$ = 3,41 m $(17\ 331,30\ +9\ 048,90)$


La rigidez relativa del muro, dependerá del lugar donde esté aplicada la fuerza. Dentro o fuera del plano, la altura se mantendrá constante, y no varía, porque todas las paredes se asumirán que tendrán una misma altura.

Rigidez Relativa

K = I/H

 $I = 1/12 bh^3$

Figura 6. **Gráfica del muro**

Fuente: elaboración propia, empleando AutoCAD.

Para la fuerza dentro del plano:

$$I = 1/12 t x L^3$$

Fuerza dentro del plano:

KAx =
$$(1/12)(0.14 \times (3.48)^3) = 0.1966$$

2,50

Fuerza fuera del plano:

KAy =
$$(1/12)(3,48 \times (0,14)^3)$$
 = 0,00031
2,50

Tabla VII. Rigidez de muros y centro de rigidez

	RIGIDEZ DE MUROS		CENTRO GE	OMETRICO	CENTRO DE	RIGIDEZ
Long(m)	Х	Υ	Х	Υ	Х	Y
3,48	0,1967	0,0003	0,9300	3,4800	0,1829	0,0011
3,48	0,1967	0,0003	0,6500	3,4800	0,1278	0,0011
3,48	0,1967	0,0003	0,8200	3,4800	0,1613	0,0011
1,60	0,0191	0,0001	0,8800	1,6000	0,0168	0,0002
0,72	0,0017	0,0001	0,8800	0,7200	0,0015	0,0000
0,72	0,0017	0,0001	0,8800	0,7200	0,0015	0,0000
0,72	0,0017	0,0001	0,6200	0,7200	0,0011	0,0000
0,72	0,0017	0,0001	0,6200	0,7200	0,0011	0,0000
3,00	0,1260	0,0003	2,0200	3,0000	0,2545	0,0008
0,92	0,0036	0,0001	2,3000	0,9200	0,0084	0,0001
1,22	0,0085	0,0001	2,3000	1,2200	0,0195	0,0001
1,08	0,0059	0,0001	0,5700	1,0500	0,0034	0,0001
0,87	0,0031	0,0001	0,5700	0,8700	0,0018	0,0001
3,71	0,2383	0,0003	0,0100	3,7100	0,0024	0,0013
0,83	0,0027	0,0001	0,0000	0,8300	0,0000	0,0001
1,01	0,0048	0,0001	1,0100	3,7100	0,0049	0,0003
1,05	0,0054	0,0001	1,0500	0,5400	0,0057	0,0001
2,02	0,0385	0,0002	2,0200	3,0000	0,0777	0,0006
2,30	0,0568	0,0002	2,3000	2,3000	0,1306	0,0005
1,88	0,0310	0,0002	1,8800	1,6000	0,0583	0,0003
1,62	0,0198	0,0001	1,6200	0,7200	0,0321	0,0001
0,93	0,0038	0,0001	0,9300	3,4800	0,0035	0,0003
0,80	0,0024	0,0001	0,8000	3,4800	0,0019	0,0003
0,65	0,0013	0,0001	0,6500	3,4800	0,0008	0,0002
0,82	0,0026	0,0001	0,8200	3,4800	0,0021	0,0003
	1,1704	0,0036			1,1015	0,0091

 Σ Rigidez muro X = 1,1704

 Σ Rigidez muro Y = 0,0036

 Σ Rigidez muro por centro geométrico X = 1,1015

 Σ Rigidez muro por centro geométrico Y = 0,0091

CR de muro = Σ Rigidez muro por centro geométrico Σ Rigidez muro

CR en
$$X = 1,1015 = 0,94 \text{ m}$$

1,1704

CR en Y =
$$0.0091$$
 = 2,52 m
0,0036

3.3. Cálculo de las excentricidades de configuración y diseño

A continuación se presentan los cálculos:

- Excentricidad de configuración = valor absoluto (CM CR)
- Excentricidad de diseño = abs.(CM CR) + 5 % B
- Excentricidad de configuración en X = abs. (1,51–0,94) = 0,57 m
- Excentricidad de configuración en Y = abs.(3.41– 2,52) = 0,89 m
- Excentricidad de diseño en X = 0,57 + 5 % (5,88) = 0,86 m
- Excentricidad de diseño en Y = 0,89 + 5 % (11,79) = 1,47 m
- Excentricidad máxima permitida, en X = 15 % (5,88) = 0,88 m
- Excentricidad máxima permitida, en Y = 15 % (11,79) = 1,76 m

- Chequeo de excentricidades = ed < emáx
- Chequeo de excentricidades en X = 0,86< 0,88 → OK
- Chequeo de excentricidades en Y = 1,47< 1,76→ OK

3.4. Determinación de la carga lateral

La fórmula que se utiliza es:

$$VB = C_s W_s$$

Donde

Ws= es la parte del peso de la edificación

Cs = es el coeficiente sísmico de diseño

W = peso total de la estructura más el 25 % de la carga viva

W = peso primer nivel:

Peso = peso muros + peso techo + 25 %Viva

W = 9048,90 + 17331,30 + 50 = 26430,20 kg.

El coeficiente sísmico (Cs) en cada dirección de análisis se establecerá de la manera siguiente:

$$Cs = \frac{S_a(T)}{R}$$

Donde

Sa (T) = es la demanda sísmica de diseño para una estructura con período

Esta es obtenida del espectro de diseño símico establecido para el sitio en la sección 4.3.4 de la Norma NSE 2; y calibrado según la probabilidad de ocurrencia requerida.

R = es el factor de reducción que se obtiene en la sección 1.6.1 de esta norma.

T = es el período fundamental de vibración de la estructura según

2.1.4 o 2.1.5

$$Sa = 0.66$$

$$R = 4$$

$$T = 0.10$$

$$Cs = \frac{S_a(T)}{R}$$

$$Cs = \frac{0,66}{4} = 0,16$$

$$VB = C_S W_S$$

$$VB = 0.16 * 26 430,20 = 4 228,83 kg$$

3.5. Determinación de la carga lateral por muro

$$V_i = \frac{K_i}{\sum_{i=1}^n K_i} V_B$$

Tabla VIII. Cálculo de carga lateral

Muro	RIGIDEZ D	E MUROS	CARGA L	ATERAL
	Х	Υ	X(kg)	Y(kg)
1	0,1967	0,0003	710,609	373,904
2	0,1967	0,0003	710,609	373,904
3	0,0191	0,0001	710,609	373,904
4	0,0017	0,0001	69,064	171,910
5	0,0017	0,0001	6,293	77,359
6	0,0017	0,0001	6,293	77,359
7	0,0017	0,0001	6,293	77,359
8	0,1260	0,0003	6,293	77,359
9	0,0036	0,0001	455,257	322,331
10	0,0085	0,0001	13,130	98,848
11	0,0059	0,0001	30,618	131,081
12	0,0031	0,0001	21,240	116,039
13	0,2383	0,0003	11,103	93,476
14	0,0027	0,0001	861,022	398,616
15	0,0048	0,0001	9,641	89,178
Α	0,0054	0,0001	17,372	108,518
В	0,0385	0,0002	19,519	112,816
С	0,0568	0,0002	138,978	217,036
D	0,0310	0,0002	205,152	247,120
E	0,0198	0,0001	112,038	201,994
F	0,0038	0,0001	71,687	174,059
G	0,0024	0,0001	13,563	99,923
Н	0,0013	0,0001	8,633	85,955
1	0,0026	0,0001	4,631	69,838
J	0,0000	0,0000	9,297	88,104
	0,9738	0,0033	4 228,945	4 228,830

Chequeo de la distribución de cargas

 Σ de cargas laterales en muro = V x

 Σ de cargas laterales en X = 4 228,94 kg. = V x \rightarrow OK

 Σ de cargas laterales en Y = 4 228,83 kg. = V x \rightarrow OK

3.6. Cálculo del incremento de carga por torsión

El momento torsión es el producto de la fuerza sísmica y la excentricidad del centro de masas con respecto al centro de rigideces. La siguiente ecuación supone la dirección en la cual el sismo causa el mayor momento torsión en el sistema:

$$\frac{+}{-}100\%F_x e_y + \frac{+}{-}30\%F_y e_x$$
$$+ \frac{+}{-}100\%F_y e_x + \frac{+}{-}30\%F_x e_y$$

3.7. Cálculo del momento torsionante (T)

Se realiza de la siguiente forma:

$$\frac{+}{-}100 \% F_x e_y + \frac{+}{-}30 \% F_y e_x$$

$$\frac{+}{-}100 \% F_y e_x + \frac{+}{-}30 \% F_x e_y$$

```
100 % (4 228,83) (1,47) + 30 % (4 228,83) (0,86) = 7 307,41 kg - m

100 % (4 228,83) (1,47) – 30 % (4 228,83) (0,86) = 5 125,34 kg - m

-100 % (4 228,83) (1,47) + 30 % (4 228,83) (0,86) = -5 125,34 kg - m

-100 % (4 228,83) (1,47) – 30 % (4 228,83) (0,86) = -7 307,41 kg - m
```

Se ha de utilizar la combinación que de el mayor resultado. Por ello el momento torsionante en los siguientes cálculos será: T = 7 307,41 kg - m

3.8. Determinación de la distancia al centro de rigidez

La distancia al centro de rigidez es la que existe entre el centro de rigidez y el centro de rigidez de cada muro. Este está ubicado en el centro geométrico del mismo.

$$D_i = CG_i - CR$$

Tabla IX. Cálculo de la distancia al centro de rigidez

Muro	CENTRO GE	OMETRICO	CENTRO D	E RIGIDEZ	DISTANCIA AL CENTRO DE RIGIDEZ	
	Х	Υ	Х	Υ	Х	Υ
1	0,9300	3,4800	0,9400	2,5200	-0,0100	0,9600
2	0,6500	3,4800	0,9400	2,5200	-0,2900	0,9600
3	0,8200	3,4800	0,9400	2,5200	-0,1200	0,9600
4	0,8800	1,6000	0,9400	2,5200	-0,0600	-0,9200
5	0,8800	0,7200	0,9400	2,5200	-0,0600	-1,8000
6	0,8800	0,7200	0,9400	2,5200	-0,0600	-1,8000
7	0,6200	0,7200	0,9400	2,5200	-0,3200	-1,8000
8	0,6200	0,7200	0,9400	2,5200	-0,3200	-1,8000
9	2,0200	3,0000	0,9400	2,5200	1,0800	0,4800
10	2,3000	0,9200	0,9400	2,5200	1,3600	-1,6000
11	2,3000	1,2200	0,9400	2,5200	1,3600	-1,3000
12	0,5700	1,0500	0,9400	2,5200	-0,3700	-1,4700
13	0,5700	0,8700	0,9400	2,5200	-0,3700	-1,6500
14	0,0100	3,7100	0,9400	2,5200	-0,9300	1,1900
15	0,0000	0,8300	0,9400	2,5200	-0,9400	-1,6900
Α	1,0100	3,7100	0,9400	2,5200	0,0700	1,1900
В	1,0500	0,5400	0,9400	2,5200	0,1100	-1,9800
С	2,0200	3,0000	0,9400	2,5200	1,0800	0,4800
D	2,3000	2,3000	0,9400	2,5200	1,3600	-0,2200
E	1,8800	1,6000	0,9400	2,5200	0,9400	-0,9200
F	1,6200	0,7200	0,9400	2,5200	0,6800	-1,8000
G	0,9300	3,4800	0,9400	2,5200	-0,0100	0,9600
Н	0,8000	3,4800	0,9400	2,5200	-0,1400	0,9600
I	0,6500	3,4800	0,9400	2,5200	-0,2900	0,9600
J	0,8200	3,4800	0,9400	2,5200	-0,1200	0,9600

3.9. Cálculo del momento de inercia polar (J)

La fórmula es la siguiente:

$$J = \sum_{i=1}^{n} d_i^2 K_i$$

JAx = Kx x d
$$y^2$$
 = 0,1967 x (-0,0100) 2 = 0,000019
JAy = Ky x d x^2 = 0,0003 x (-0,96) 2 = 0,00027

Tabla X. Cálculo del momento de inercia polar

	ICIA AL E RIGIDEZ	RIGIDEZ DI	RIGIDEZ DE MUROS		CARGA POR TORSION		O POLAR
Х	Υ	Х	Υ	X(kg)	Y(kg)	Х	Y
-0,0100	0,9600	0,1967	0,0003	-0,0388	2299,4712	0,0000	0,0003
-0,2900	0,9600	0,1967	0,0003	-1,1242	2299,4712	0,0165	0,0003
-0,1200	0,9600	0,1967	0,0003	-0,4652	2299,4712	0,0028	0,0003
-0,0600	-0,9200	0,0191	0,0001	-0,1069	-214,1740	0,0001	0,0001
-0,0600	-1,8000	0,0017	0,0001	-0,0481	-38,1847	0,0000	0,0002
-0,0600	-1,8000	0,0017	0,0001	-0,0481	-38,1847	0,0000	0,0002
-0,3200	-1,8000	0,0017	0,0001	-0,2567	-38,1847	0,0002	0,0002
-0,3200	-1,8000	0,0017	0,0001	-0,2567	-38,1847	0,0002	0,0002
1,0800	0,4800	0,1260	0,0003	3,6093	736,5869	0,1470	0,0001
1,3600	-1,6000	0,0036	0,0001	1,3938	-70,8113	0,0067	0,0002
1,3600	-1,3000	0,0085	0,0001	1,8483	-134,1658	0,0157	0,0002
-0,3700	-1,4700	0,0059	0,0001	-0,4451	-105,2465	0,0008	0,0002
-0,3700	-1,6500	0,0031	0,0001	-0,3586	-61,7534	0,0004	0,0002
-0,9300	1,1900	0,2383	0,0003	-3,8435	3453,7245	0,2061	0,0005
-0,9400	-1,6900	0,0027	0,0001	-0,8691	-54,9212	0,0024	0,0002
0,0700	1,1900	0,0048	0,0001	0,0788	69,6835	0,0000	0,0001
0,1100	-1,9800	0,0054	0,0001	0,1287	-130,2723	0,0001	0,0004
1,0800	0,4800	0,0385	0,0002	2,4302	224,8611	0,0449	0,0000
1,3600	-0,2200	0,0568	0,0002	3,4845	-152,1336	0,1050	0,0000
0,9400	-0,9200	0,0310	0,0002	1,9686	-347,4405	0,0274	0,0001
0,6800	-1,8000	0,0198	0,0001	1,2272	-434,9472	0,0092	0,0005
-0,0100	0,9600	0,0038	0,0001	-0,0104	43,8873	0,0000	0,0001
-0,1400	0,9600	0,0024	0,0001	-0,1248	27,9357	0,0000	0,0001
-0,2900	0,9600	0,0013	0,0001	-0,2100	14,9841	0,0001	0,0001
-0,1200	0,9600	0,0026	0,0001	-0,1096	30,0837	0,0000	0,0001
		1,1704	0,0036	7,8535	9641,5561	0,5856	0,0049

 $\Sigma \, dxi^2 \, x \, Kyi \, en \, X = 0,5856$

$$\Sigma$$
 dyi² x Kxi en Y = 0,0049
J = 0,0048 + 0,5856 = 0,60

3.10. Determinación de la carga por torsión por muro

Se determina por la fórmula:

$$\Delta V = \frac{Td_i K_i}{J}$$

Donde

$$T = 7 307,41 \text{ kg-m}$$

 $J = 0,60 \text{ kg-m}^2$

$$\Delta V = \frac{Td_{y}K_{x}}{I}$$

$$\Delta VAy = 7307,41 \times (0,9600) \times (0,1967) = 2299,78$$
0,60

$$\Delta V = \frac{Td_x K_y}{J}$$

$$\Delta VAx = 7307,41 \times (-0,0100) \times (0,0003) = -0,036$$

$$0,60$$

Tabla XI. Cálculo de carga por torsión

DISTANCIA DE RIO		RIGIDEZ D	E MUROS	CARGA POR TORSION		
Х	Y	Х	Υ	X(kg)	Y(kg)	
-0,0100	0,9600	0,1967	0,0003	-0,0596	3 537,3304	
-0,2900	0,9600	0,1967	0,0003	-1,7294	3 537,3304	
-0,1200	0,9600	0,1967	0,0003	-0,7156	3 537,3304	
-0,0600	-0,9200	0,0191	0,0001	-0,1645	-329,4689	
-0,0600	-1,8000	0,0017	0,0001	-0,0740	-58,7404	
-0,0600	-1,8000	0,0017	0,0001	-0,0740	-58,7404	
-0,3200	-1,8000	0,0017	0,0001	-0,3948	-58,7404	
-0,3200	-1,8000	0,0017	0,0001	-0,3948	-58,7404	
1,0800	0,4800	0,1260	0,0003	5,5522	1 133,1089	
1,3600	-1,6000	0,0036	0,0001	2,1441	-108,9307	
1,3600	-1,3000	0,0085	0,0001	2,8433	-206,3904	
-0,3700	-1,4700	0,0059	0,0001	-0,6848	-161,9031	
-0,3700	-1,6500	0,0031	0,0001	-0,5516	-94,9967	
-0,9300	1,1900	0,2383	0,0003	-5,9126	5 312,9454	
-0,9400	-1,6900	0,0027	0,0001	-1,3370	-84,4866	
0,0700	1,1900	0,0048	0,0001	0,1212	107,1958	
0,1100	-1,9800	0,0054	0,0001	0,1979	-200,4009	
1,0800	0,4800	0,0385	0,0002	3,7385	345,9091	
1,3600	-0,2200	0,0568	0,0002	5,3603	-234,0307	
0,9400	-0,9200	0,0310	0,0002	3,0284	-534,4758	
0,6800	-1,8000	0,0198	0,0001	1,8878	-669,0895	
-0,0100	0,9600	0,0038	0,0001	-0,0159	67,5129	
-0,1400	0,9600	0,0024	0,0001	-0,1919	42,9742	
-0,2900	0,9600	0,0013	0,0001	-0,3230	23,0504	
-0,1200	0,9600	0,0026	0,0001	-0,1686	46,2785	

Determinación de la carga por sismo total

La carga total por sismo es la suma entre la carga lateral y el incremento de carga por torsión:

$$V_T = V_x + \Delta V$$

Si el incremento de corte es negativo significa que la torsión que se ejerce en la estructura se dirige en contra del desplazamiento del sismo. Para efectos de cálculo el incremento de corte negativo no se considera, puesto que al hacerlo sería como restarle carga cortante al muro y diseñarlo por debajo de los requerimientos del código.

Tabla XII. Cálculo de la carga total

CARGA LA	TERAL	CARGA P TORSION		CARGA TOTAL		
X(kg)	Y(kg)	X(kg)	Y(kg)	X(kg)	Y(kg)	
1 085,650	571,241	-0,0596	3 537,3304	1 085,7095	-2 966,0896	
1 085,650	571,241	-1,7294	3 537,3304	1 087,3793	-2 966,0896	
1 085,650	571,241	-0,7156	3 537,3304	1 086,3655	-2 966,0896	
105,514	262,639	-0,1645	-329,4689	105,6790	592,1083	
9,615	118,188	-0,0740	-58,7404	9,6890	176,9281	
9,615	118,188	-0,0740	-58,7404	9,6890	176,9281	
9,615	118,188	-0,3948	-58,7404	10,0098	176,9281	
9,615	118,188	-0,3948	-58,7404	10,0098	176,9281	
695,530	492,449	5,5522	1 133,1089	689,9777	-640,6600	
20,059	151,018	2,1441	-108,9307	17,9152	259,9483	
46,777	200,263	2,8433	-206,3904	43,9336	406,6530	
32,451	177,282	-0,6848	-161,9031	33,1354	339,1847	
16,963	142,810	-0,5516	-94,9967	17,5149	237,8068	
1 315,448	608,995	-5,9126	5 312,9454	1 321,6309	-4 703,9502	
14,729	136,244	-1,3370	-84,4866	16,0664	220,7308	
26,541	165,791	0,1212	107,1958	26,4198	58,5953	
29,821	172,357	0,1979	-200,4009	29,6229	372,7581	
212,327	331,582	3,7385	345,9091	208,5889	-14,3268	
313,426	377,544	5,3603	-234,0307	308,0661	611,5749	
171,169	308,601	3,0284	-534,4758	168,1408	843,0771	
109,521	265,922	1,8878	-669,0895	107,6332	935,0119	
20,721	152,659	-0,0159	67,5129	20,7365	85,1463	
13,189	131,320	-0,1919	42,9742	13,3812	88,3455	
7,074	106,697	-0,3230	23,0504	7,3975	83,6469	
74,203	134,603	-0,1686	46,2785	14,3721	88,3242	

3.11. Cálculo del momento actuante

El momento actuante no es otro más que el producto de la carga de sismo por la altura del muro.

$$M = V_t h$$

Tabla XIII. Cálculo del momento actuante

Muro	CARG	A TOTAL	MOMENTO ACTUANTE		
	X(kg)	Y(kg)	X(kg-m)	Y(kg-m)	
1	710,6682	-3 163,4266	1 776,6705	-7 908,5666	
2	712,3380	-3 163,4266	1 780,8449	-7 908,5666	
3	711,3242	-3 163,4266	1 778,3104	-7 908,5666	
4	69,2287	501,3787	173,0716	1 253,4467	
5	6,3675	136,0998	15,9188	340,2494	
6	6,3675	136,0998	15,9188	340,2494	
7	6,6883	136,0998	16,7207	340,2494	
8	6,6883	136,0998	16,7207	340,2494	
9	449,7046	-810,7781	1 124,2615	-2 026,9453	
10	10,9856	207,7788	27,4640	519,4469	
11	27,7744	337,4716	69,4360	843,6790	
12	21,9252	277,9422	54,8131	694,8556	
13	11,6549	188,4726	29,1372	471,1815	
14	866,9350	-4 914,3296	2 167,3374	-12 285,8240	
15	10,9781	173,6648	27,4453	434,1619	
Α	17,2511	1,3222	43,1278	3,3056	
В	19,3212	313,2167	48,3030	783,0418	
С	135,2397	-128,8730	338,0993	-322,1826	
D	199,7919	481,1510	499,4798	1 202,8775	
E	109,0099	736,4698	272,5247	1 841,1744	
F	69,7988	843,1481	174,4970	2 107,8703	
G	13,5785	32,4097	33,9462	81,0241	
Н	8,8249	42,9807	22,0624	107,4517	
I	4,9536	46,7880	12,3839	116,9699	
J	9,4654	41,8252	23,6636	104,5631	

3.12. Esfuerzos de corte y flexión en los muros

El esfuerzo de corte, es el esfuerzo interno o resultante de las tensiones paralelas a la sección transversal de un elemento. Mientras el esfuerzo de flexión se produce por la combinación de los esfuerzos de compresión y de tensión que actúan también en la sección transversal de un elemento estructural. Se pueden calcular con las siguientes ecuaciones.

V= esfuerzo unitario de corte = corte/ área muro = v/ (l*t*100)

Donde

V= fuerza de corte en kilogramos

L= longitud de muro en metros

T= espesor del muro 14 cm, 0,14cm

Fb= esfuerzo de flexión debido al momento de volteo sobre una sección no fracturada = mc/i

l= momento de inercia del muro = tl^3 /12 = (14*(100)3*L3)/12 = 1,167*10*L3 cm L= longitud de muro en metros

Entonces:

 $fb = M^*L^*(100)^2/2(1,167^*10^*L3) = (0,004283^*M)/L^2$

Tabla XIV. Corte y flexion

Muro	Long(m)	h/L h=2,5	Fv	V	Mv	Fb
1	3,48	0,72	1 085,71	0,22	3 210,90	1,14
2	3,48	0,72	1 087,38	0,22	3 215,07	1,14
3	3,48	0,72	1 086,37	0,22	3 212,07	1,14
4	1,60	1,56	105,68	0,05	492,54	0,82
5	0,72	3,47	9,69	0,01	126,97	1,05
6	0,72	3,47	9,69	0,01	126,97	1,05
7	0,72	3,47	10,01	0,01	127,77	1,06
8	0,72	3,47	10,01	0,01	127,77	1,06
9	3,00	0,83	689,98	0,16	2 153,07	1,02
10	0,92	2,72	17,92	0,01	176,08	0,89
11	1,22	2,05	43,93	0,03	283,94	0,82
12	1,08	2,31	33,14	0,02	236,96	0,87
13	0,87	2,87	17,51	0,01	167,94	0,95
14	3,71	0,67	1 321,36	0,25	3 832,85	1,19
15	0,83	3,01	16,07	0,01	158,61	0,99
Α	1,01	2,48	58,6	0,04	210,18	0,88
В	1,05	2,38	372,76	0,25	223,9	0,87
С	2,02	1,24	-14,33	-0,01	809,74	0,85
D	2,30	1,09	611,57	0,19	1 098,39	0,89
E	1,88	1,33	843,08	0,32	688,64	0,83
F	1,62	1,54	935,01	0,41	500,27	0,82
G	0,93	2,69	85,15	0,07	184,56	0,81
Н	0,80	3,13	88,35	0,08	147,62	0,99
I	0,65	3,85	86,65	0,09	111,25	1,13
J	0,82	3,05	88,32	0,08	152,95	0,97

Diseño por flexión =fb

Momento de volteo = Mv

Corte actuante= V

Diseño por cortante =Fv

Cálculo del factor K

$$K = \frac{1}{1 + \frac{f_s}{nf_b}}$$

$$f_s = 1/2f_y$$

$$f_b = 1/3f'_m$$

$$n = \frac{E}{E_m}$$

Nota: debido a que fb y fs son variables dependientes de k, para fines de cálculo se realiza la igualación descrita. Esto es válido para el sistema analizado, ya que los incrementos por cargas gravitacionales y de sismo son pequeñas. Se realiza una serie de iteraciones variando los valores de fb y fs. Esto para determinar el área de acero y la tendencia después de varias iteraciones es un aproximado. Esto se cumple debido a que el área de acero propuesta es mayor que la requerida. Ejemplo:

Es =
$$2,03$$
 E6 kg/cm², Em = 750 f 'm = 750 * 25 = 18 750 kg/cm²

n = 2,03 E6/18750 = 108,27 kg/cm²
Fs =
$$(1/2)(1/2)$$
 (2810) = 702,50 kg/cm²
Fb = $(1/2)(1/3)(25)$ = 4,17 kg/cm²

$$k = 108,27 = 0,3910$$
$$108,27 + 702,50/4,17$$

Cálculo de j

$$J=1-\frac{K}{3}$$

$$j = 1 - 0.391/3 = 0.8697$$

3.13. Determinación de la cuantía horizontal por muro

La fórmula es:

$$\rho = \frac{M}{f_s J b d^2}$$

Tabla XV. Cuantía vertical requerida y cuantía suministrada por muro

Muro	d	ρ	Ash requerida (cm2)	ρ minima	ρ Suministrada	Ash Suministrada (cm2)
1	3,48	0,0000	0,0000	0,0013	0,00063336	6,33
2	3,48	0,0000	0,0000	0,0013	0,00063336	6,33
3	3,48	0,0000	0,0000	0,0013	0,00063336	6,33
4	1,60	0,0000	0,0000	0,0013	0,0002912	2,91
5	0,72	0,0000	0,0000	0,0013	0,00013104	1,31
6	0,72	0,0000	0,0000	0,0013	0,00013104	1,31
7	0,72	0,0000	0,0000	0,0013	0,00013104	1,31
8	0,72	0,0000	0,0000	0,0013	0,00013104	1,31
9	3,00	0,0000	0,0000	0,0013	0,000546	5,46
10	0,92	0,0000	0,0000	0,0013	0,00016744	1,67
11	1,22	0,0000	0,0000	0,0013	0,00022204	2,22
12	1,08	0,0000	0,0000	0,0013	0,00019656	1,97
13	0,87	0,0000	0,0000	0,0013	0,00015834	1,58
14	3,71	0,0000	0,0000	0,0013	0,00067522	6,75
15	0,83	0,0000	0,0000	0,0013	0,00015106	1,51
Α	1,01	0,0000	0,0000	0,0013	0,00018382	1,84
В	1,05	0,0000	0,0000	0,0013	0,0001911	1,91
С	2,02	0,0000	0,0000	0,0013	0,00036764	3,68
D	2,30	0,0000	0,0000	0,0013	0,0004186	4,19
E	1,88	0,0000	0,0000	0,0013	0,00034216	3,42
F	1,62	0,0000	0,0000	0,0013	0,00029484	2,95
G	0,93	0,0000	0,0000	0,0013	0,00016926	1,69
Н	0,80	0,0000	0,0000	0,0013	0,0001456	1,46
I	0,65	0,0000	0,0000	0,0013	0,0001183	1,18
J	0,82	0,0000	0,0000	0,0013	0,00014924	1,49

Fuente: elaboración propia.

3.14. Determinación de la cuantía vertical por muro

Se calcula el:

As mínimo = 0,0007*b*h

Asmin = 0,0007*b*h

Tabla XVI. Cuantía vertical requerida y cuantía suministrada por muro

Muro	d	ρ	Ash requerida	ρ minima	ρ Suministrada	Ash Suministrada
1	3,48	0.0000	(cm2)	0.0007		(cm2)
2		0,0000	0,000	0,0007	0,0003	3,41
	3,48	0,0000	0,000	0,0007	0,0003	3,41
3	3,48	0,0000	0,000	0,0007	0,0003	3,41
4	1,60	0,0000	0,000	0,0007	0,0002	1,57
5	0,72	0,0000	0,000	0,0007	0,0001	0,71
6	0,72	0,0000	0,000	0,0007	0,0001	0,71
7	0,72	0,0000	0,000	0,0007	0,0001	0,71
8	0,72	0,0000	0,000	0,0007	0,0001	0,71
9	3,00	0,0000	0,000	0,0007	0,0003	2,94
10	0,92	0,0000	0,000	0,0007	0,0001	0,90
11	1,22	0,0000	0,000	0,0007	0,0001	1,20
12	1,08	0,0000	0,000	0,0007	0,0001	1,06
13	0,87	0,0000	0,000	0,0007	0,0001	0,85
14	3,71	0,0000	0,000	0,0007	0,0004	3,64
15	0,83	0,0000	0,000	0,0007	0,0001	0,81
Α	1,01	0,0000	0,000	0,0007	0,0001	0,99
В	1,05	0,0000	0,000	0,0007	0,0001	1,03
С	2,02	0,0000	0,000	0,0007	0,0002	1,98
D	2,30	0,0000	0,000	0,0007	0,0002	2,25
E	1,88	0,0000	0,000	0,0007	0,0002	1,84
F	1,62	0,0000	0,000	0,0007	0,0002	1,59
G	0,93	0,0000	0,000	0,0007	0,0001	0,91
Н	0,80	0,0000	0,000	0,0007	0,0001	0,78
I	0,65	0,0000	0,000	0,0007	0,0001	0,64
J	0,82	0,0000	0,000	0,0007	0,0001	0,80

4. CÁLCULO DE CASA DE CONCRETO ARMADO

4.1. Planos

A continuación se encuentran tres planos: una planta arquitectónica donde se encuentra de mejor manera la distribución de la casa a utilizar, en este trabajo de graduación. Planta de losas y planta de muros, esto con la finalidad que se tenga la mejor distribución para los cálculos correspondientes.

Figura 7. Planta de arquitectura de concreto armado

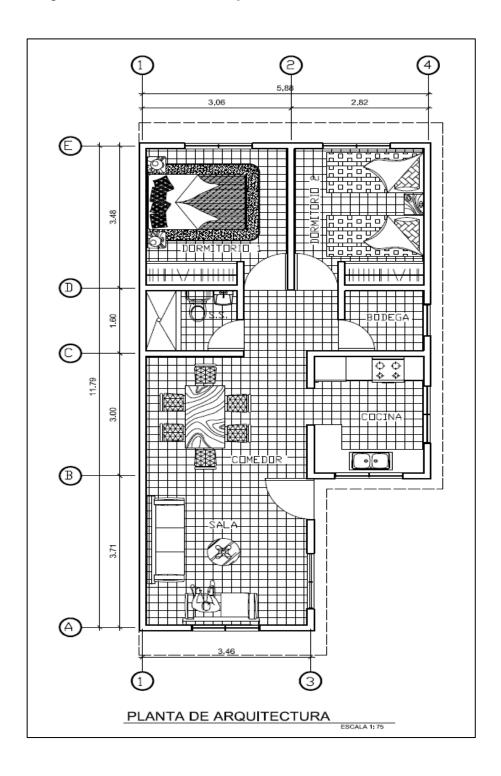
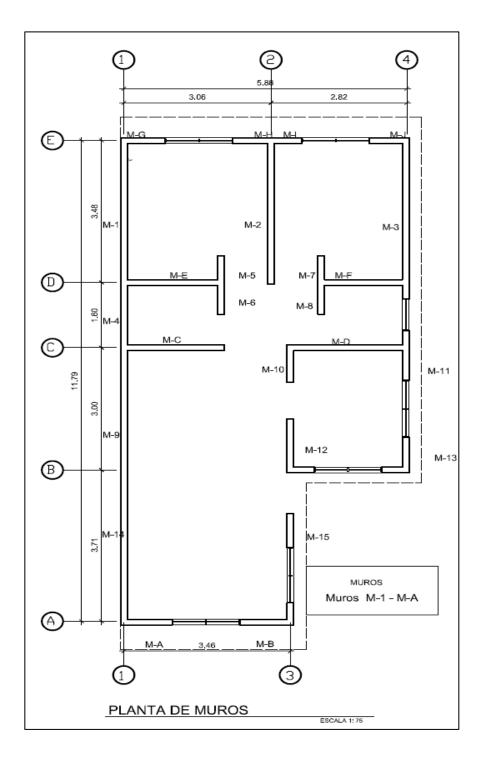



Figura 8. Planta de muros de concreto armado

Fuente: elaboración propia, empleando AutoCAD.

4.2. Peso de losas

Se calcula con la siguiente fórmula:

• Carga muerta en techo

Losa = (peso específico) * (espesor de la losa)

Espesor = t = p/180

Losa = $(2 400 \text{ kg/m}^3) * (0,10 \text{ m}) = 240 \text{ kg/m}^2$

Tabla XVII. Pesos de losas

•	Espesor de losas t = 0.10m										
Peso específico del concreto = 2 400 kg/m3											
_											
Losa	Long(Y) m	Long (X) m	Area m2	peso (Kg)							
1,00	3,48	3,06	10,65	2 555,71							
2,00	3,48	2,82	9,81	2 355,26							
3,00	1,60	2,08	3,33	798,72							
4,00	1,60	2,00	3,20	768,00							
5,00	1,60	1,82	2,91	698,88							
6,00	3,00	3,46	10,38	2 491,20							
7,00	3,00	2,54	7,62	1 828,80							
8,00	3,71	3,46	12,84	3 080,78							
			60,74	14 577,36							

4.3. Pesos de muros

La fórmula para determinarlo es:

Peso de muro = área * long * peso específico

Tabla XVIII. Cálculo de peso de muros

Peso muros			
altura de muros h =	2.50		
Peso específico			
del concreto = 2			
400 kg/m3			
Espesor de muros	t= 0.10m		
	· · · · · · · · · · · · · · · · · · ·		
Muro	Long(Area(Peso
	m)	m2)	(kg)
1,00	3,48	8,70	2 088,00
2,00	3,48	8,70	2 088,00
3,00	3,48	8,70	2 088,00
4,00	1,60	4,00	960,00
5,00	0,72	1,80	432,00
6,00	0,72	1,80	432,00
7,00	0,72	1,80	432,00
8,00	0,72	1,80	432,00
9,00	3,00	7,50	1 800,00
10,00	0,92	2,30	552,00
11,00	1,22	3,05	732,00
12,00	1,08	2,70	648,00
13,00	0,87	2,18	522,00
14,00	3,71	9,28	2 226,00
15,00	0,83	2,08	498,00
Α	1,01	2,53	606,00
В	1,05	2,63	630,00
С	2,02	5,05	1 212,00
D	2,30	5,75	1 380,00
E	1,88	4,70	1 128,00
F	1,62	4,05	972,00
G	0,93	2,33	558,00
Н	0,80	2,00	480,00
I	0,65	1,63	390,00
J	0,82	2,05	492,00
PESO	TOTAL		23 778,00

4.4. Centro de masa en losas

La fórmula utilizada es:

CM de muro =
$$\Sigma$$
 peso muro * X
 Σ peso muro

Tabla XIX. Cálculo de centro de masa en losas

Losa	Long(Y) m	Long (X) m	peso (Kg)	W*X (kg- m)	W*Y (kg- m)
1,00	3,48	3,06	2 555,71	7 820,48	8 893,88
2,00	3,48	2,82	2 355,26	6 641,84	8 196,32
3,00	1,60	2,08	798,72	1 661,34	1 277,95
4,00	1,60	2,00	768,00	1 536,00	1 228,80
5,00	1,60	1,82	698,88	1 271,96	1 118,21
6,00	3,00	3,46	2 491,20	8 619,55	7 473,60
7,00	3,00	2,54	1 828,80	4 645,15	5 486,40
8,00	3,71	3,46	3 080,78	10 659,51	11 429,71
			14 577,36	42 855,84	45 104,87

Fuente: elaboración propia.

CM en X =
$$\underline{42.855,84}$$
 = 2,93 m
14.577,36

CM en Y =
$$\underline{45\ 104.87}$$
 = 3,09 m
14 577,36

4.5. Cálculo de centro de masa en muros

La fórmula es la siguiente:

CM de muro =
$$\Sigma$$
 peso muro * X
 Σ peso muro

Tabla XX. Cálculo de centro de masa de muros

Muro	X	Υ	Peso (kg)	W*X (kg- m)	W*Y (kg- m)
1	0,93	3,48	2 088,00	1 941,84	7 266,24
2	0,65	3,48	2 088,00	1 357,20	7 266,24
3	0,82	3,48	2 088,00	1 712,16	7 266,24
4	0,88	1,60	960,00	844,80	1 536,00
5	0,88	0,72	432,00	380,16	311,04
6	0,88	0,72	432,00	380,16	311,04
7	0,62	0,72	432,00	267,84	311,04
8	0,62	0,72	432,00	267,84	311,04
9	2,02	3,00	1 800,00	3 636,00	5 400,00
10	2,30	0,92	552,00	1 269,60	507,84
11	2,30	1,22	732,00	1 683,60	893,04
12	0,57	1,05	648,00	369,36	680,40
13	0,57	0,87	522,00	297,54	454,14
14	0,01	3,71	2 226,00	22,26	8 258,46
15	0,00	0,83	498,00	0,00	413,34
Α	1,01	3,71	606,00	612,06	2 248,26
В	1,05	0,54	630,00	661,50	340,20
С	2,02	3,00	1 212,00	2 448,24	3 636,00
D	2,30	2,30	1 380,00	3 174,00	3 174,00
E	1,88	1,60	1 128,00	2 120,64	1 804,80
F	1,62	0,72	972,00	1 574,64	699,84
G	0,93	3,48	558,00	518,94	1 941,84
Н	0,80	3,48	480,00	384,00	1 670,40
1	0,65	3,48	390,00	253,50	1 357,20
J	0,82	3,48	492,00	403,44	1 712,16
	_	_	23 778,00	26 581,32	59 770,80

CM en X =
$$\underline{26581,32}$$
 = 1,11 m $\underline{23778,00}$ CM en Y = $\underline{59770,80}$ = 2,51 m $\underline{23778,00}$

4.6. Centro de rigidez

La rigidez relativa del muro, dependerá del lugar donde esté aplicada la fuerza. Tanto dentro o fuera del plano. La altura se mantendrá constante, la

Cual no varía, porque todas las paredes se asumirán que tendrán una misma altura.

$$R = 1/\Delta$$

$$\Delta = \left(\left(\frac{h}{d} \right)^3 + 3 \left(\frac{h}{d} \right) \right) =$$

Donde

h = altura del muro

Tabla XXI. Centro de rigidez sentido X, Y

Muro	Long(m)		Rigides				
	σ, ,	Δ	Relativa	х	Υ	Ry*X	Rx*Y
1	3,48	2,67	0,37	0,93	3,48	0,35	
2	3,48	2,67	0,37	0,65	3,48	0,24	
3	3,48	2,67	0,37	0,82	3,48	0,31	
4	1,60	7,13	0,14	0,88	1,60	0,12	
5	0,72	22,47	0,04	0,88	0,72	0,04	
6	0,72	22,47	0,04	0,88	0,72	0,04	
7	0,72	22,47	0,04	0,62	0,72	0,03	
8	0,72	22,47	0,04	0,62	0,72	0,03	
9	3,00	3,19	0,31	2,02	3,00	0,63	
10	0,92	15,54	0,06	2,30	0,92	0,15	
11	1,22	10,35	0,10	2,30	1,22	0,22	
12	1,08	12,30	0,08	0,57	1,05	0,05	
13	0,87	16,88	0,06	0,57	0,87	0,03	
14	3,71	2,48	0,40	0,01	3,71	0,00	
15	0,83	18,11	0,06	0,00	0,83		0,05
Α	1,01	13,55	0,07	1,01	3,71		0,27
В	1,05	12,81	0,08	1,05	0,54		0,04
С	2,02	5,24	0,19	2,02	3,00		0,57
D	2,30	4,44	0,23	2,30	2,30		0,52
Е	1,88	5,76	0,17	1,88	1,60		0,28
F	1,62	7,01	0,14	1,62	0,72		0,10
G	0,93	15,29	0,07	0,93	3,48		0,23
Н	0,80	19,14	0,05	0,80	3,48		0,18
I	0,65	26,33	0,04	0,65	3,48		0,13
J	0,82	18,44	0,05	0,82	3,48		0,19
			3,61			2,24	2,56

$$Xcr = 2.24 = 0.62 \text{ m}$$

3.61

$$Ycr = 2.56 = 0.70 \text{ m}$$

3.61

4.7. Cálculo de las excentricidades de configuración y diseño

Las excentricidades se calculan de la siguiente forma:

Excentricidad de configuración = valor absoluto (CM – CR) Excentricidad de diseño = abs.(CM – CR) + 5 % B

Excentricidad de configuración en X = abs. (1,11-0,62) = 0,49 mExcentricidad de configuración en Y = abs. (1,51-0,70) = 0,81 m

Excentricidad de diseño en X = 0.49 + 5% (5.88) = 0.78 mExcentricidad de diseño en Y = 0.81 + 5% (11.79) = 1.39 m

Excentricidad máxima permitida, según código en X = 15 % (5,88) = 0,88 mExcentricidad máxima permitida, según código en Y = 15 % (11,79) = 1,76 mChequeo de excentricidades = ed < emáx

Chequeo de excentricidades en X = $0.86 < 0.88 \rightarrow OK$ Chequeo de excentricidades en Y = $1.39 < 1.76 \rightarrow OK$

4.8. Acciones actuantes en muros por carga lateral

Las acciones se miden con la fórmula:

$$VB = C_s W_s$$

Donde

Ws= es la parte del peso de la edificación

Cs = es el coeficiente sísmico de diseño

W = peso total de la estructura más el 25 % de la carga viva

W = peso primer nivel:

Peso = peso muros + peso techo + 25%Viva

W = 23778,00 + 17331,30 + 50 = 41159,30 kg.

El coeficiente sísmico (Cs) en cada dirección de análisis se establecerá de la manera siguiente:

$$Cs = \frac{S_a(T)}{R}$$

Donde

Sa (T) = es la demanda sísmica de diseño para una estructura con período (T) obtenida del espectro de diseño símico establecido. Esto para el sitio en la sección 4.3.4 de la Norma NSE 2; y calibrado según la probabilidad de ocurrencia requerida.

R = es el factor de reducción que se obtiene en la sección 1.6.1 de esta Norma.

T = es el período fundamental de vibración de la estructura según la Norma 2.1.4 o 2.1.5

$$Sa = 0.66$$

$$R = 4$$

$$T = 0.10$$

$$Cs = \frac{S_a(T)}{R}$$

$$Cs = \frac{0.66}{4} = 0.16$$

$$VB = C_s W_s$$

$$VB = 0.16 * 41 159.30 = 6 585.48 kg$$

Cálculo de corte directo

Momento de torsión = Corte de piso * Excentricidad

Momento de torsión x = 6585,48 kg * 0,78 = 5136,67 kg-m

Momento de torsión y = 6 585,48 kg * 1,39 = 9 153,85 kg-m

4.9. Cálculo de corte directo

Este se obtiene de la operación de la rigidez del marco en estudio, dividido entre las sumatorias de rigideces del todo el eje. Luego este valor se multiplica por el corte del nivel.

$$V_{di} = \frac{R_X}{\sum R_X} V_i$$

Tabla XXII. Corte directo sentido X, Y

Muro	Rigides	Vdx
1,00	0,37	763,07
2,00	0,37	763,07
3,00	0,37	763,07
4,00	0,14	285,93
5,00	0,04	90,70
6,00	0,04	90,70
7,00	0,04	90,70
8,00	0,04	90,70
9,00	0,31	638,10
10,00	0,06	131,20
11,00	0,10	197,01
12,00	0,08	165,68
13,00	0,06	120,77
14,00	0,40	823,37
15,00	0,06	112,56
	2,52	
Muro	Rigides	Vdy
А	0,07	619,66
В	0,08	655,49
С	0,19	1 601,28
D	0,23	1 890,45
Е	0,17	1 458,57
F	0,14	1 197,81
G	0,07	549,22
Н	0,05	438,75
l	0,04	318,94
J	0,05	455,39
	1,09	

4.10. Cálculo de centro de torsión

Esta relacionado con la excentricidad. Esta se da cuando el centro de masa de la estructura no coincide con el centro geométrico de la misma.

$$X_T = \frac{\sum R_{ix} X_i}{\sum R_{iy}}$$

$$X_T = \frac{2,24}{1,09} = 2 m$$

$$Y_T = \frac{2.56}{2,52} = 1 \, m$$

Según Agies se debe considerar una excentricidad accidental además de la excentricidad que se obtenga. La excentricidad accidental deberá ser del 5 % de la dimensión perpendicular de las fuerzas consideradas.

$$Xt = 2 + (0.05*11.79) = 2.60$$

$$Yt = 1 + (0.05*5.88) = 1.30$$

Tabla XXIII. Centro de torsión X, Y

Xi	Xt	Xit
11,79	2,60	9,19
8,31	2,60	5,71
6,71	2,60	4,11
3,71	2,60	1,11
0,00	2,60	-2,60

Yi	Yt	Yit
0,00	1,30	-1,30
3,06	1,30	1,76
5,88	1,30	4,58

4.11. Cálculo de cortante por torsión

Para determinar el valor cortante por torsión es necesario conocer primero el valor del momento por torsión. Este se calcula multiplicando el valor de la excentricidad por el valor contante.

$$F_{v} = \frac{R_{x} y_{t}}{\sum (R_{x} Y_{T}^{2} + R_{y} X_{T}^{2})} M_{Tx}$$

Tabla XXIV. Centro de cortante por torsión X, Y

Muro	Dirección del muro	Rigides Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv
1	Υ	0,37	0,93	0,31	0,12	0,036	-537,71
2	Υ	0,37	0,65	0,03	0,01	0,000	-537,71
3	Υ	0,37	0,82	0,20	0,07	0,015	-537,71
4	Υ	0,14	0,88	0,26	0,04	0,009	-201,49
5	Υ	0,04	0,88	0,26	0,01	0,003	-63,92
6	Υ	0,04	0,88	0,26	0,01	0,003	-63,92
7	Υ	0,04	0,62	0,00	0,00	0,000	-63,92
8	Υ	0,04	0,62	0,00	0,00	0,000	-63,92
9	Υ	0,31	2,02	1,40	0,44	0,614	-449,65
10	Υ	0,06	2,30	1,68	0,11	0,182	-92,45
11	Υ	0,10	2,30	1,68	0,16	0,273	-138,82
12	Υ	0,08	0,57	0,05	0,00	0,000	-116,75
13	Υ	0,06	0,57	0,05	0,00	0,000	-85,10
14	Υ	0,40	0,01	0,61	0,25	0,150	-580,20
15	Υ	0,06	0,00	0,62	0,03	0,021	-79,32
		2,52				1,307	

Continuación de la tabla XXIV.

Muro	Direccion del muro	Rigides Relativa	Dist (Y)	dy	R*dx	R*dx^2	Fv	Ft	M
Α	Χ	0,07	3,71	3,01	0,22	0,67	420,43	1 040,09	2 600,23
В	Χ	0,08	0,54	0,16	0,01	0,00	68,57	724,07	1 810,17
С	Χ	0,19	3,00	2,30	0,44	1,01	167,52	1 768,79	4 421,98
D	Χ	0,23	2,30	1,60	0,36	0,58	197,77	2 088,22	5 220,55
Е	Χ	0,17	1,60	0,90	0,16	0,14	152,59	1 611,16	4 027,91
F	Χ	0,14	0,72	0,02	0,00	0,00	125,31	1 323,12	3 307,81
G	Χ	0,07	3,48	2,78	0,18	0,51	57,46	606,68	1 516,70
Н	Χ	0,05	3,48	2,78	0,15	0,40	45,90	484,65	1 211,64
- 1	Χ	0,04	3,48	2,78	0,11	0,29	33,37	352,30	880,75
J	Χ	0,05	3,48	2,78	0,15	0,42	47,64	503,03	1 257,58
		1,09				4,02			

Fuente: elaboración propia.

4.12. Cálculo de cortante total

Es la capacidad de soportar cada uno de los marcos tanto en eje x como en eje y; para sumarlo solo se debe sumar el corte directo con el cortante por torsión

Tabla XXV. Calculo de cortante total X, Y

Muro	Dirección del muro	Rigidez Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv	Ft(kg)
1	Y	0,37	0,93	0,31	0,12	0,36	-537,71	90,5
2	Υ	0,37	0,65	0,03	0,01	0	-537,71	90,5
3	Υ	0,37	0,82	0,2	0,07	0,015	-537,71	90,5
4	Y	0,14	0,88	0,26	0,04	0,009	-201,49	33,91
5	Y	0,04	0,88	0,26	0,01	0,003	-63,92	10,76
6	Y	0,04	0,88	0,26	0,01	0,003	-63,92	10,76
7	Y	0,04	0,62	0	0	0	-63,92	10,76
8	Υ	0,04	0,62	0	0	0	-63,92	10,76
9	Y	0,31	2,02	1,4	0,44	0,614	-449,65	75,67
10	Y	0,06	2,3	1,68	0,11	0,182	-92,45	15,56
11	Y	0,1	2,3	1,68	0,16	0,273	-138,82	23,36
12	Y	0,08	0,57	0,05	0	0	-116,75	19,65
13	Υ	0,06	0,57	0,05	0	0	-85,1	14,32
14	Y	0,4	0,01	0,61	0,25	0,15	-580,2	97,65
15	Y	0,06	0	0,62	0,03	0,021	-79,32	13,35
		2,52				1,307		

Continuación de la tabla XXV.

Muro	Direcion del muro	Rigides Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv	Ft(kg)
Α	Х	0,07	3,71	3,01	0,22	0,67	420,43	706,7
В	X	0,08	0,54	0,16	0,01	0	444,74	747,56
С	X	0,19	3	2,3	0,44	1,01	1 086,44	1 826,19
D	X	0,23	2,3	1,6	0,36	0,58	1 282,64	2 155,98
E	X	0,17	1,6	0,9	0,16	0,14	989,62	1 663,44
F	X	0,14	0,72	0,02	0	0	812,7	1 366,06
G	X	0,07	3,48	2,78	0,18	0,51	372,64	626,36
Н	X	0,05	3,48	2,78	0,15	0,4	297,69	500,38
1	Х	0,04	3,48	2,78	0,11	0,29	216,39	363,73
J	X	0,05	3,48	2,78	0,15	0,42	308,98	519,35
		1,09				4,02		

Fuente: elaboración propia.

4.13. Momento actuante

Este se calcula como:

$$M = F_t h$$

Donde

h= altura de muro

Tabla XXVI. Cálculo de momento actuante

Muro	Direcion del muro	Rigides Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv	Ft(kg)
1	Y	0,37	0,93	0,31	0,12	0,36	-537,71	90,5
2	Υ	0,37	0,65	0,03	0,01	0	-537,71	90,5
3	Y	0,37	0,82	0,2	0,07	0,015	-537,71	90,5
4	Y	0,14	0,88	0,26	0,04	0,009	-201,49	33,91
5	Y	0,04	0,88	0,26	0,01	0,003	-63,92	10,76
6	Y	0,04	0,88	0,26	0,01	0,003	-63,92	10,76
7	Υ	0,04	0,62	0	0	0	-63,92	10,76
8	Υ	0,04	0,62	0	0	0	-63,92	10,76
9	Y	0,31	2,02	1,4	0,44	0,614	-449,65	75,67
10	Y	0,06	2,3	1,68	0,11	0,182	-92,45	15,56
11	Y	0,1	2,3	1,68	0,16	0,273	-138,82	23,36
12	Y	0,08	0,57	0,05	0	0	-116,75	19,65
13	Υ	0,06	0,57	0,05	0	0	-85,1	14,32
14	Y	0,4	0,01	0,61	0,25	0,15	-580,2	97,65
15	Y	0,06	0	0,62	0,03	0,021	-79,32	13,35
		2,52				1,307		

Continuación de tabla XXVI.

Muro	Direcion del muro	Rigides Relativa	Dist (Y)	dy	R*dy	R*dy^2	Fv	Ft(kg)
Α	X	0,07	3,71	3,01	0,22	0,67	420,43	706,7
В	X	0,08	0,54	0,16	0,01	0	444,74	747,56
С	X	0,19	3	2,3	0,44	1,01	1 086,44	1 826,19
D	X	0,23	2,3	1,6	0,36	0,58	1 282,64	2 155,98
E	X	0,17	1,6	0,9	0,16	0,14	989,62	1 663,44
F	X	0,14	0,72	0,02	0	0	812,7	1 366,06
G	X	0,07	3,48	2,78	0,18	0,51	372,64	626,36
Н	X	0,05	3,48	2,78	0,15	0,4	297,69	500,38
I	X	0,04	3,48	2,78	0,11	0,29	216,39	363,73
J	X	0,05	3,48	2,78	0,15	0,42	308,98	519,35
		1,09				4,02		

Fuente: elaboración propia.

4.14. Determinación de la cuantía por muro

La fórmula es:

As mínimo = 0,0007*b*h

Asmin = 0,0007*b*h

Tabla XXVII. Cálculo de área de acero

Muro	d	ρ	Ash requerida (cm2)	ρ minima	ρ Suministrada	Ash Suministrada (cm2)
1	3,48	0,00	0,02	0,00	0,00	2,19
2	3,48	0,00	0,02	0,00	0,00	2,19
3	3,48	0,00	0,02	0,00	0,00	2,19
4	1,60	0,0001	0,0101	0,0007	0,0001008	1,01
5	0,72	0,0000	0,0045	0,0007	0,00004536	0,45
6	0,72	0,0000	0,0045	0,0007	0,00004536	0,45
7	0,72	0,0000	0,0045	0,0007	0,00004536	0,45
8	0,72	0,0000	0,0045	0,0007	0,00004536	0,45
9	3,00	0,0002	0,0189	0,0007	0,000189	1,89
10	0,92	0,0001	0,0058	0,0007	0,00005796	0,58
11	1,22	0,0001	0,0077	0,0007	0,00007686	0,77
12	1,08	0,0001	0,0068	0,0007	0,00006804	0,68
13	0,87	0,0001	0,0055	0,0007	0,00005481	0,55
14	3,71	0,0002	0,0234	0,0007	0,00023373	4,32
15	0,83	0,0001	0,0052	0,0007	0,00005229	0,52
Α	1,01	0,0001	0,0064	0,0007	0,00006363	0,64
В	1,05	0,0001	0,0066	0,0007	0,00006615	0,66
С	2,02	0,0001	0,0127	0,0007	0,00012726	1,27
D	2,30	0,0001	0,0145	0,0007	0,0001449	1,45
E	1,88	0,0001	0,0118	0,0007	0,00011844	1,18
F	1,62	0,0001	0,0102	0,0007	0,00010206	1,02
G	0,93	0,0001	0,0059	0,0007	0,00005859	0,59
Н	0,80	0,0001	0,0050	0,0007	0,0000504	0,50
ı	0,65	0,0000	0,0041	0,0007	0,00004095	0,41
J	0,82	0,0001	0,0052	0,0007	0,00005166	0,52

5. COMPARACIÓN DE RESULTADOS

5.1. Mampostería

Para esta comparación se toma como ejemplo el muro más crítico en este caso el número 14.

Tabla XXVIII. Muro número 14

COORI	COORDENADAS GEOMETRICAS					
Muro	Х	Y	Long(m)			
14	0,01	3,71	3,71			

Fuente: elaboración propia.

5.1.1. Centros de masa

Se calcula de la siguiente manera:

CM de muro = Σ peso muro * centro geométrico Σ peso muro

Tabla XXIX. Pesos de muros

	PESOS DE MUROS						
Peso Muros =	310	kg/ml					
Muro	Long(m)	Peso (kg)	Х	Υ	Х	Υ	
14	3.71	1 150,10	0,01	3,71	11,50	4 266,87	

5.1.2. Rigidez de muros y centro de rigidez

Esta se calcula como:

CR de muro = Σ Rigidez muro por centro geométrico

 $\Sigma \; \text{Rigidez muro}$

Tabla XXX. Rigidez de muros y centro de rigidez

	RIGIDE	Z DE MUROS	CENTRO GEOME	TRICO	CENTRO DE RIGI	DEZ
Long(m)	Х	Y	Х	Υ	X	Y
3,71	0,2383	0,0003	0,0100	3,7100	0,0024	0,0013

Fuente: elaboración propia.

5.1.3. Determinación de la carga lateral por muro

La fórmula es:

$$V_i = \frac{K_i}{\sum_{i=1}^n K_i} V_v$$

Tabla XXXI. Determinación de la carga lateral por muro

Muro	CARGA LATERAL	
	X(kg)	Y(kg)
14	861,02	398,61

5.1.4. Determinación de la distancia al centro de rigidez

La fórmula utilizada es:

$$D_i = CG_i - CR$$

Tabla XXXII. Determinación de la distancia al centro de rigidez

Muro	CENTRO GEOMETRICO		CENTRO DE RIGIDEZ		DISTANCIA AL CENTRO DE RIGIDEZ	
	Х	Υ	Х	Υ	Х	Υ
14	0.0100	3.7100	0.9400	2.5200	-0.9300	1.1900

Fuente: elaboración propia.

5.1.5. Cálculo del momento de inercia polar (J)

Esta fórmula es:

$$J = \sum_{i=1}^n d_i^2 K_i$$

Tabla XXXIII. Cálculo del momento de inercia polar (J)

	AL CENTRO GIDEZ	RIGIDEZ DE MUROS		MOMENTO POLAR		
Х	Υ	Х	Y	Х	Y	
-0,9300	1,1900	0,2383	0,0003	0,2061	0,0005	

5.1.6. Determinación de la carga por torsión por muro

Para ello, se utiliza lo siguiente:

$$\Delta V = \frac{Td_i K_i}{J}$$

Tabla XXXIV. Determinación de la carga por torsión por muro

DISTANCIA DE RI	AL CENTRO GIDEZ	RIGIDEZ DE MUROS		CARGA POR TORSION		
Х	Y	Х	Υ	X(kg)	Y(kg)	
-0,9300	1,1900	0,2383	0,0003	-5,9126	5 312,9454	

Fuente: elaboración propia.

5.1.7. Determinación de la carga por sismo total

La fórmula que se presenta es:

$$V_T = V_x + \Delta V$$

Tabla XXXV. Determinación de la carga por sismo total

Muro	CARGA TOTAL		
	X(kg)	Y(kg)	
14	1 321,3609	-4 703,9502	

5.1.8. Cálculo del momento actuante

Se calcula dicho momento como:

$$M = V_t h$$

Tabla XXXVI. Cálculo del momento actuante

Muro	Long(m)	MOMENTO (C. Gravitacional)	
		X(kg-m)	Y(kg-m)

Fuente: elaboración propia.

5.1.9. Determinación de la cuantía horizontal por muro

La fórmula que se presenta es:

$$\rho = \frac{M}{f_s J b d^2}$$

Tabla XXXVII. Determinación de la cuantía horizontal por muro

Muro	D	Р	Ash requerida (cm2)	ρ minima	ρ Suministrada	Ash Suministrada (cm2)
14	3,71	0,0281	2,8059	0,0013	0,00067522	6,75

5.1.10. Momento actuante

Para ello, se utiliza lo siguiente:

Muro	Long(m)	MOMENTO	(C.	MOMENTO	MOMENTO
		Gravita	cional)	(VIENTO)	ACTUANTE
				(kg-m)	(kg-m)
		X(kg-m)	Y(kg-m)	(16 111)	(16 111 /
14	3,71	3 303,4022	-11 759,8755	529,4479	3 832,85

5.1.11. Cuantía vertical requerida y cuantía suministrada por muro

La fórmula utilizada es:

Muro	D	Р	Ash	ρ minima	ρ Suministrada	Ash
			requerida			Suministrada
			(cm2)			(cm2)
14	3,71	0,0326	3,256	0,0007	0,0004	3,64

5.2. Concreto armado

Para esta comparación tomaremos como ejemplo el muro más crítico en este caso el número 14.

Tabla XXXVIII. Concreto armado muro número 14

co	COORDENADAS GEOMETRICAS								
Muro	Х	Y	Long(m)						
14 0,01 3,71 3,71									

5.2.1. Peso en muros

Se determina el peso de muros, ya que en esta comparación uno de los dos sistemas debe obtener más peso que el otro.

Tabla XXXIX. Peso en muros

Peso Muros							
altura de muros h =2.50							
Peso Específico del Concreto = 2 400 kg/m3							
Espesor de muros t= 0.10m							
Muro	Long(m)	Área(m2)	Peso				
			(kg)				
14	3,71	9,28	2 226,00				

Fuente: elaboración propia.

5.3. Centros de masa

La fórmula utilizada es:

CM de muro = Σ peso muro * centro geométrico Σ peso muro

Tabla XL. Centros de masa

Muro	Х	Y	Peso (kg)	W*X (kg- m)	W*Y (kg- m)
14	0,01	3,71	2 226,00	22,26	8 258,46

CM de muro =
$$8258,46 = 3,71$$
m
 $2226,00$

5.4. Rigidez de muros y centro de rigidez

La fórmula utilizada es:

$$R = 1 / \Delta$$

CR de muro = Σ Rigidez muro por centro geométrico

 $\Sigma \; \text{Rigidez muro}$

Tabla XLI. Rigidez de muro y centro de rigidez

Muro	Long(m)	Δ	Rigides Relativa	Х	Y	Ry*X	Rx*Y
14	3,71	2,48	0,40	0,01	3,71	0,004	

5.5. Cálculo de corte directo

La fórmula utilizada es:

$$V_{di} = \frac{R_X}{\sum R_X} V_i$$

Tabla XLII. Cálculo de corte directo

Muro	Rigidez	Vdx	
14	0,40	823,37	

Fuente: elaboración propia.

5.6. Cálculo de cortante por torsión

La fórmula utilizada es:

$$F_{v} = \frac{R_{x} y_{t}}{\sum (R_{x} Y_{T}^{2} + R_{y} X_{T}^{2})} M_{Tx}$$

Tabla XLIII. Cálculo de cortante por torsión

Muro	Dirección del muro	Rigidez Relativa	Dist (X)	Dx	R*dx	R*dx^2	Fv
14	Υ	0,40	0,01	0,61	0,25	0,150	580,20

5.7. Cálculo de cortante total

La fórmula utilizada es:

Cortante total = Corte directo + cortante de torsión

Tabla XLIV. Cálculo de cortante total

Muro	Dirección del muro	Rigidez Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv	Ft(kg)
14	Υ	0,40	0,01	0,61	0,25	0,150	-89,36	97,65

Fuente: elaboración propia.

5.8. Momento actuante

La fórmula utilizada es:

$$M = F_t h$$

Donde

h= altura de muro

Tabla XLV. Momento actuante

Muro	Dirección del muro	Rigidez Relativa	Dist (X)	dx	R*dx	R*dx^2	Fv	Ft(kg)	M(kg-m)
14	Υ	0,40	0,01	0,61	0,25	0,150	-89,36	15,16	244,12

5.9. Determinación de la cuantía por muro

Con este cálculo se concluye acerca los dos sistemas que tiene una mayor cuantilla.

Tabla XLVI. Determinación de la cuantía por muro

Muro	D	Р	Ash requerida (cm2)	ρ mínima	ρ Suministrada	Ash Suministrada (cm2)
14	3,71	0,0002	0,0234	0,0007	0,00023373	4,34

Fuente: elaboración propia.

5.10. Cuadro comparativo

A continuación se presenta el cuadro comparativo.

Tabla XLVII. Cuadro comparativo

	Mamposteria		Concreto Armado	
Peso de Losa	240 kg/m2		240 kg/m2	
Coordenadas	X= 0,01 m	Y= 3,71 m	X= 0,01 m	Y= 3,71 m
Peso de Muros	1 150,10 kg		2226,00 kg	
Centro de Masa	X= 11, 50 kg-m	Y= 4 266,87 kg-m	X= 22,26 kg-m	Y= 8 258, 46 kg-m
Rigidez de Muro	X= 0,2383 m	Y= 0,0003 m	X= 0,004 m	Y= 1,48 m
Centro de Rigidez	X= 0,0024 m	Y= 0,0013 m	X= 0,001 m	Y= 0,40 m
Corte Basal	4 228.83kg		6 585.48kg	
Carga Lateral	X= 861,02 kg	Y= 398,61 kg	Y= 677,85 kg	
Carga de Torsion	X= 5,91 kg	Y= 5 312,94 kg	Y= 89,36 kg	
Carga Total	X= 1 321,36 kg	Y= 4 703,95 kg	Y= 15,16 kg	
Momento Actuante	X= 3 303,40 kg-m	Y= 11 759,87 kg-m	Y= 37,89 kg-m	
Cortante	0,25 kg			
Momento de Volteo	3 832,85 kg/m			
Diseño de Flexion	1,19 kg/cm			
area de acero horizontal	3,64 cm2		4,34 m	

CONCLUSIONES

- 1. El sistema tipo cajón, el cual se utilizó en este tema, está formado por muros y losas como diafragmas horizontales formando cajones que trasmiten la carga al suelo. En conclusión no cubre grandes claros y si es el caso para hacerlo se debe reforzar cada muro, pero por otro lado su ventaja es que es un sistema sismo resistente.
- Al desarrollar el método de análisis para mampostería y concreto, con el sistema tipo cajón, además de ser una estructura muy segura su desarrollo estructural es muy parecido diferenciándose únicamente en la cuentilla de acero.
- 3. Las variables utilizadas son las mismas con la diferencia que dependen del material a usar en cada uno de los métodos.
- 4. Al realizar el diseño y análisis, para cada uno de los sistemas se obtiene las ventajas y desventajas de cada uno de ellos. Esto ayuda a ver que el sistema más adecuado es el de concreto por la sencilla razón que es un sistema más seguro, aunque su desventaja al de mampostería es que requiere más acero y eso hace que sea económicamente más alto.
- 5. La cuantilla fue analizada con respecto al muro núm. 14, ya que su momento es mayor y al realizar su análisis se obtiene en el sistema de concreto armado una cuantilla más alta con respecto al mismo muro en el sistema de mampostería.

6. En el desarrollo de los dos métodos constructivos se realizó un análisis comparativo del comportamiento estructural del muro más crítico. Este para los dos sistemas tiene las mismas dimensiones y cargas, pero su análisis varia por los parámetros que aplica las normas en cada uno de los mismos. Con base en las propiedades de los materiales, la función estructural y las consideraciones ambientales se determinó que el sistema de concreto armado tiene un mejor comportamiento estructural para Guatemala. Sin embargo, requiere de una mayor cuantilla de acero y con esto se concluye que el sistema más viable para Guatemala es el de concreto armado, ya que es un sistema más seguro.

RECOMENDACIONES

- 1. Integrar diseños específicos, para diferentes departamentos.
- 2. Cuando se realizan proyectos habitacionales de viviendas populares, de preferencia se debería contar con un proveedor de materiales de confianza, el cual certifique la calidad de lo que está suministrando, no estando de más los ensayos particulares que pueden realizársele a los materiales.
- 3. De preferencia el lugar de construcción debe ser plano o casi plano, con pendientes poco pronunciadas. Esto para evitar fallas por corte en el suelo, las cuales son muy usual al realizar construcciones en las laderas.
- Verificar que los muros, columnas y mochetas queden adecuadamente alineadas en el cimiento, para evitar excentricidades indeseables en el mismo.

BIBLIOGRAFÍA

- Administración de Vivienda Federal. Norma de planificación y construcción para casos proyectados. FHA, 1994. 40 p.
- 2. American Concrete Institute. *Building Code Requirementes for Structural* Concrete: ACI 318-2008. California: ACI, 2008. 518 p.
- Asociación Guatemalteca de Ingeniería Estructural y Sísmica. AGIES
 Nr. Normas estructurales de diseño recomendadas para la república de Guatemala. 2010. 457 p.
- Building code requirements for masonry structures (ACI 530-05) Edition 2005. Reported by the masonry standards joint committee (MSJC). 180 p.
- Código Internacional de la Edificación (IBC). Estados Unidos de América:
 International Code Council, Inc. 2003. 176 p.
- 6. Código Uniforme de la Edificación (UBC). Estados Unidos de América: International Conference of Building Officials. 1997. 180 p.
- 7. JAMES, E. Amhein. *Guía Informativa para Mampostería Reforzada con Lechada*. Guatemala: Bloteca, 1994. 145 p.
- 8. Legget/Karrow. *Geología Aplicada a la Ingeniería Civil*. México: Macgraw-Hill, 1986. 130 p.

- 9. MELGAR CHÁVEZ, Oscar Melgar. *Análisis del Origen de los Sismos en Guatemala*. Trabajo de graduación de Ing. Civil, Facultad de Ingeniería. Universidad de San Carlos de Guatemala. 190 p.
- NILSON, Arthur H. Diseño de estructuras de concreto. 12a ed.
 Colombia: McGraw-Hill, 2001. 722 p.
- R. C. Hibbeller. Análisis estructural. México: Prentice Hall Hispanoamericana, 1997. 150 p.
- TAUBE, Karl A. Estados Unidos de América: Publicado por el Instituto de Mampostería de América, 19.